18 задание егэ информатика буквоед

Егэ по информатике полезный материал для подготовки к егэ по информатике - отработка заданий 16 и 18. источник: vk.com/itege ma
ЕГЭ по информатике

Полезный материал для подготовки к ЕГЭ по информатике  — отработка заданий 16 и 18.

Источник: vk.com/itege ma

Задание 16 — Знание позиционных систем счисления (повышенный уровень сложности)

Теория + пример разбора заданий.

→ Скачать материал — EGE-INF-16

Задание 16 из демоверсии 2020 года:

Сколько единиц содержится в двоичной записи значения выражения:

48 + 28 – 8?

Ответ: ___________________________.

Задание 18 — Знание основных понятий и законов математической логики (повышенный уровень сложности)

Разработка содержит нужные формулы, разбор 6 видов задач с ответами, задания для самостоятельного решения.

→ Скачать материал — EGE-INF-18

Задание 18 из демоверсии 2020 года:

Для какого наименьшего целого неотрицательного числа А выражение

(x + 2y < A) / (y > x) / (x > 30)

тождественно истинно, т.е. принимает значение 1 при любых целых неотрицательных x и y?

Ответ: ___________________________.

Смотрите также:

ОГЭ по математике. Тренировочный вариант СтатГрад

Видеоуроки ОГЭ | Сегодня, 21:46

Решение тестовой части (№1-19) тренировочной работы по математике от 18 апреля 2022 года.


Практика по 19 заданию ЕГЭ по химии

Реакции окислительно-восстановительные.


Итоговый тест по курсу геометрии 9 класса

Тест по темам «Планиметрия», «Угол», «Измерение углов», «Радианная мера угла», «Векторы», «Хорда».


Квадрат разлинован на N×N клеток (1 N вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз – в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю.

В ответе укажите два числа – сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

  1     8     8     4  
10 1 1 3
1 3 12 2
2 3 5 6

Для указанных входных данных ответом должна быть пара чисел

Л. И. Мазничевская

средняя общеобразовательная школа № 763, Москва

Решение задания 18 ЕГЭ ПО ИНФОРМАТИКЕ С ПОМОЩЬЮ ТАБЛИЦ ИСТИННОСТИ

Аннотация

В статье представлены материалы, предназначенные для использования учителями информатики при подготовке учащихся к ЕГЭ по информатике.

К сожалению, правильно решают задание 18 ЕГЭ по информатике малая часть учащихся. Это связано с тем, что предлагаются различные способы решения этого задания, но эти способы применимы только на некотором сегменте заданий.

В представленных вашему вниманию материалах четыре различных типа задач решаются с помощью составления таблиц истинности. Все задачи выбраны из заданий для тренировки с известного сайта К. Ю. Полякова[1].

Ключевые слова: информатика, таблица истинности, алгоритм, законы алгебры логики, импликация.

Контактная информация

Мазничевская Лариса Ивановна, учитель информатики высшей категории, государственное бюджетное общеобразовательное учреждение города Москвы “Школа № 763”, адрес: 129346, г. Москва, ул. Стартовая, д. 27, к. 3; телефон: (495) 474-90-60; e-mail: mli[email protected]inbox.ru

При решении любого задания 18 ЕГЭ по информатике необходимо знать основные понятия и законы математической логики, а также выполнить следующие шаги алгоритма:

  • определение элементарных высказываний

  • замена переменных (при необходимости)

  • раскрытие импликации или эквивалентности

  • преобразование с использованием законов алгебры логики

  • построение таблиц истинности

  • запись ответа.

Задача 1(105 Поляков)

На числовой прямой даны два отрезка: P = [44; 49] и Q = [28; 53]. Укажите наибольшую возможную длину такого отрезка A, что формула

тождественно истинна, то есть принимает значение 1 при любом значении переменной х.

Решение:

Введем обозначения и упростим выражение:

=P Q

Вся числовая ось распадается на интервалы, построим таблицу истинности для одного из значений заданного интервала для полученной формулы

Интервал

Значение Х

P

Q



А

Итог

(-;28]

20

1

1

[28;44]

30

1

любое

любое

1

[44;49]

48

1

1

любое

любое

1

[49;53]

50

1

любое

любое

1

[53;+]

54

1

1

Так как нам нужна наибольшая возможная длина такого отрезка A, чтобы формула

была тождественно истинна, то есть принимала значение 1 при любом значении переменной х, то А принимает значение истинно на [28;53], длина этого отрезка равна 53-28=25

Ответ: 25

Задача 2(135 Поляков)

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа А формула

ДЕЛ(x, A)  (ДЕЛ(x, 14)  ДЕЛ(x, 21))

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

Решение:

Упростим выражение:

ДЕЛ(x, A)  (ДЕЛ(x, 14)  ДЕЛ(x, 21))=  ДЕЛ(x, A) ДЕЛ(x, 14)  ДЕЛ(x, 21)

Определим числа, входящие во множество ДЕЛ(x, 14) и ДЕЛ(x, 21): 14, 21, 28, 42, 56,63…

Построим таблицу истинности для формулы  ДЕЛ(x, A) ДЕЛ(x, 14)  ДЕЛ(x, 21)

Число Х

ДЕЛ(x, 14)

ДЕЛ(x,21)

ДЕЛ(x, 14)  ДЕЛ(x, 21)

Х не кратно А

А

Итог

14

1

1

1

21

1

1

1

28

1

1

1

42

1

1

1

любое

любое

1

56

1

1

1

Необходимо выбрать первое значение А, при котором высказывание «Х не кратно А»может принимать любое значение Х=42, оно является наименьшим.

Ответ: 42

Задача 3(150 Поляков)

Введём выражение M & K, обозначающее поразрядную конъюнкцию M и K (логическое «И» между соответствующими битами двоичной записи). Определите наименьшее натуральное число A, такое что выражение

(X & 56  0)  ((X & 48 = 0)  (X & A  0))

тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной X)?

Решение:

Для удобства введем обозначения и упростим выражение

56= X & 56  0

48=X & 48  0

A= X & A  0

(X & 56  0)  ((X & 48 = 0)  (X & A  0))=56  ( 48  A ) = А

Переведем в двоичную систему счисления числа 18, 54

5610=1110002

4810=1100002

Искомое число х – разрядное слагаемое двоичной системы счисления из множества {1, 2, 4,8,16,32}. Построим таблицу истинности

Число Х, его двоичный код

X & 56 = 0

1110002

X & 48  0

1100002

А

X & A  0

Итог

1, 000001

1

Любое(0 или1)

1

2, 000010

1

Любое(0 или1)

1

4, 000100

1

Любое(0 или1)

1

8, 001000

1

1

16, 010000

1

Любое(0 или1)

1

32, 100000

1

Любое(0 или1)

1

Из таблицы х=8, оно является наименьшим

Ответ: 8

Задача 4(88 Поляков)

Элементами множества А являются натуральные числа. Известно, что выражение

(x {2, 4, 6, 8, 10, 12}) → (((x {3, 6, 9, 12, 15})  ¬(x A)) → ¬(x {2, 4, 6, 8, 10, 12}))

истинно (т. е. принимает значение 1) при любом значении переменной х. Определите наименьшее возможное значение суммы элементов множества A.

Решение:

Для удобства введем обозначения и упростим выражение

В=x {2, 4, 6, 8, 10, 12}

С= x {3, 6, 9, 12, 15}

А= x A

(x {2, 4, 6, 8, 10, 12}) → (((x {3, 6, 9, 12, 15})  ¬(x A)) → ¬(x {2, 4, 6, 8, 10, 12}))=B→((C ¬A) → ¬B) = ¬B((C ¬A) → ¬B)= ¬B¬C ¬A) ¬B= ¬B¬C

Построим таблицу истинности

Число Х

¬B

¬C

A

Итог

2

1

любое(0 или1)

1

3

1

любое(0 или1)

1

4

1

любое(0 или1)

1

6

1

1

8

1

любое(0 или1)

1

9

1

любое(0 или1)

1

10

1

любое(0 или1)

1

12

1

1

15

1

любое(0 или1)

1

6+12=18

Ответ: 8

Литература

  1. http://kpolyakov.spb.ru/school/probook.htm

ЕГЭ информатика 18 задание разбор, теория, как решать.

Динамическое программирование в электронных таблицах. Робот-сборщик монет, (П) — 1 балл

Е18.19 Посетив клетку, Робот забирает монету с собой

Квадрат разлинован на N × N клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут …

Читать далее

Е18.18 Определите количество способов, которыми Робот может попасть из левой верхней клетки в правую нижнюю.

Квадрат разлинован на МхМ клеток (1 < N < 20). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке пересечь границы квадрата (внутренние, обозначенные жирной линией, или внешние) Робот …

Читать далее

Е18.17 Проходя через клетку, Сборщик собирает все монеты, лежащие на ней

Квадрат разлинован на N×N клеток (2 < N < 21). В каждой клетке записано целое положительное число – количество монет. Исполнитель Сборщик имеет две команды ВПРАВО и ВВЕРХ, которые, соответственно, перемещают его на одну клетку вправо или на одну клетку вверх. Проходя через клетку, Сборщик собирает все монеты, лежащие на ней. На поле существуют стены, …

Читать далее

Е18.16 включается в сумму, если оно больше числа в предыдущей клетке на пути робота

Дан квадрат 15×15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит робот. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы квадрата робот не может. При этом ведётся подсчёт суммы по следующим правилам: число в очередной клетке, через которую проходит …

Читать далее

Е18.15 Между соседними клетками квадрата также могут быть внутренние стены.

Между соседними клетками квадрата также могут быть внутренние стены. Квадрат разлинован на N × N клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз – в соседнюю нижнюю. Квадрат …

Читать далее

Е18.14 За посещение клетки A взимается плата 1 монета

За посещение клетки A взимается плата 1 монета Квадрат разлинован на N x N клеток (1 < N < 20). Исполнитель Буквоед может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Буквоед перемещается в соседнюю правую клетку, по команде вниз – в соседнюю нижнюю. При попытке …

Читать далее

Е18.13 каждое следующее число отличалось от предыдущего не более чем на 10

каждое следующее число отличалось от предыдущего не более чем на 10 Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число отличалось от предыдущего не более чем на 10. Какую максимальную сумму могут иметь выбранные числа? В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана …

Читать далее

Е18.12 Два исполнителя – ПРАВО и ЛЕВО – существуют в рамках одного поля.

Два исполнителя – ПРАВО и ЛЕВО – существуют в рамках одного поля. Квадрат разлинован на N×N клеток (2 < N < 20), N – нечетное число. В каждой клетке лежат монеты, количество которых соответствует записанному числу. Количество монет не может быть меньше 1. Два исполнителя – ПРАВО и ЛЕВО – существуют в рамках одного поля. …

Читать далее

Е18.11. При попытке пересечь границы Робот разрушается.

При попытке пересечь границы Робот разрушается. Квадрат разлинован  на N x N клеток (1 < N < 20). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: влево или вверх. По команде влево Робот перемещается в соседнюю левую клетку, по команде вверх – в соседнюю верхнюю. При попытке пересечь границы …

Читать далее

Е18.10. При попытке пересечь границы (внутренние, обозначенные жирными линиями

При попытке пересечь границы (внутренние, обозначенные  жирными линиями, или границы квадрата) Робот разрушается. Квадрат разлинован на N x N клеток (1 < N < 20). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз – …

Читать далее