415 решу егэ физика

Подборка тренировочных вариантов егэ 2022 по физике для 11 класса с ответами из различных источников. соответствуют демоверсии егэ 2022 по

Подборка тренировочных вариантов ЕГЭ 2022 по физике для 11 класса с ответами из различных источников.

 Соответствуют демоверсии ЕГЭ 2022 по физике

Структура варианта КИМ ЕГЭ 2022 по физике

Каждый вариант экзаменационной работы состоит из двух частей и включает в себя 30 заданий, различающихся формой и уровнем сложности.

Часть 1 содержит 23 задания с кратким ответом, из них 11 заданий с записью ответа в виде числа или двух чисел и 12 заданий на установление соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр.

Часть 2 содержит 7 заданий с развёрнутым ответом, в которых необходимо представить решение задачи или ответ в виде объяснения с опорой на изученные явления или законы.

При разработке содержания КИМ учитывается необходимость проверки усвоения элементов знаний, представленных в разделе 2 кодификатора.

Продолжительность ЕГЭ по физике

На выполнение всей экзаменационной работы отводится 235 минут. Примерное время на выполнение заданий экзаменационной работы составляет:

− для каждого задания с кратким ответом – 2–5 минут;

− для каждого задания с развёрнутым ответом – от 5 до 20 минут.

Дополнительные материалы и оборудование

Перечень дополнительных устройств и материалов, пользование которыми разрешено на ЕГЭ, утверждён приказом Минпросвещения России и Рособрнадзора. Используется непрограммируемый калькулятор (на каждого участника экзамена) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка

Связанные страницы:

1)

ЕДИНЫЙ ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ПО ФИЗИКЕ ДЛИТСЯ




235
мин

2) СТРУКТУРА КИМов — 2018 и 2019 по сравнению с 2017г. несколько ИЗМЕНИЛАСЬ:

Вариант экзаменационной работы будет состоять из двух частей и включит в себя
32 задания. Часть 1 будет содержать 24 задания с кратким ответом, в том числе задания с самостоятельной записью ответа в виде числа, двух чисел или слова, а также задания на установление
соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр. Часть 2 будет содержать 8 заданий, объединенных общим видом деятельности – решение задач.
Из них 3 задания с кратким ответом (25–27) и 5 заданий (28–32), для которых необходимо привести развернутый ответ. В работу будут включены задания трех уровней сложности. Задания базового уровня
включены в часть 1 работы (18 заданий, из которых 13 заданий с записью ответа в виде числа, двух чисел или слова и 5 заданий на соответствие и множественный выбор). Задания повышенного
уровня распределены между частями 1 и 2 экзаменационной работы: 5 заданий с кратким ответом в части 1, 3 задания с кратким ответом и 1 задание с развернутым ответом в части 2. Последние четыре
задачи части 2 являются заданиями высокого уровня сложности. Часть 1 экзаменационной работы будет включать два блока заданий: первый проверяет освоение понятийного аппарата школьного курса
физики, а второй – овладение методологическими умениями. Первый блок включает 21 задание, которые группируются, исходя из тематической принадлежности: 7 заданий по механике, 5 заданий по МКТ и
термодинамике, 6 заданий по электродинамике и 3 по квантовой физике.

Новым заданием базового уровня сложности является последнее задание первой части (24 позиция), приуроченное к возвращению курса астрономии в школьную программу. Задание имеет
характеристику типа «выбор 2 суждений из 5».
Задание 24, как и другие аналогичные задания в
экзаменационной работе, оценивается максимально в 2 балла, если верно указаны оба элемента ответа, и в 1 балл, если в одном из элементов допущена ошибка. Порядок записи цифр в ответе значения не
имеет. Как правило, задания будут иметь контекстный характер, т.е. часть данных, необходимых для выполнения задания будут приводиться в виде таблицы, схемы или графика.

В соответствии с этим заданием в кодификаторе добавился подраздел «Элементы астрофизики» раздела «Квантовая физика и элементы астрофизики», включающий следующие пункты:

·

Солнечная система: планеты земной
группы и планеты-гиганты, малые тела Солнечной системы.

·

Звёзды: разнообразие звездных
характеристик и их закономерности. Источники энергии звезд.

·

Современные представления о
происхождении и эволюции Солнца и звёзд. Наша галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной.

·

Современные взгляды на строение и
эволюцию Вселенной.

подробнее о структуре КИМ-2018 Вы можете узнать, посмотрев вебинар с участием М.Ю. Демидовой https://www.youtube.com/watch?v=JXeB6OzLokU либо в документе, приведенном ниже.

Подготовка к ОГЭ и ЕГЭ

Среднее общее образование

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Перышкина. Физика (7-9)

Разбираем задания ЕГЭ по физике (Вариант С) с учителем.

Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).

В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.

На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.

Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.

S
=
(30 + 20) с
10 м/с = 250 м.
2

Ответ.
250 м.

Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.

Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза

a

=

v
= (8 – 2) м/с = 2 м/с 2 .
t
3 с

На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.

+ = (1)

Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем

T
mg
= ma

(2);

из формулы (2) модуль силы натяжения

Т
= m
(g
+ a

) = 100 кг (10 + 2) м/с 2 = 1200 Н.

Ответ
. 1200 Н.

Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?

Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.

Тр + + = (1)

Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):

N
= 16 Н · 1,5 м/с = 24 Вт.

Ответ.
24 Вт.

Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.

Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.

= T ; m
= T
2
; m
= k
T
2
; m
= 200 H/м
(4 с) 2 = 81,14 кг ≈ 81 кг.

k

2

2
39,438

Ответ:
81 кг.

На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.

  1. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
  2. Изображенная на рисунке система блоков не дает выигрыша в силе.
  3. h
    , нужно вытянуть участок веревки длиной 3h
    .
  4. Для того чтобы медленно поднять груз на высоту h
    h
    .

Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:

  1. Для того чтобы медленно поднять груз на высоту h
    , нужно вытянуть участок веревки длиной 2h
    .
  2. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.

Ответ.
45.

В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?

  1. Увеличивается;
  2. Уменьшается;
  3. Не изменяется.

Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a

, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный

Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a

. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a

mg
= 0; (1) Выразим силу натяжения F
упр = mg
F a

(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a

= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a

, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.

Ответ.
13.

Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.

Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Б) Коэффициент трения бруска о наклонную плоскость

3) mg
cosα

Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;

Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.

Запишем основное уравнение динамики:

Тр + = (1)

Запишем данное уравнение (1) для проекции сил и ускорения.

На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=


mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.

На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a

; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma

(5); F
тр = m
(g
sinα
a

) (6); Помним, что сила трения пропорциональна силе нормального давления N
.

По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.

μ
=
F
тр
= m
(g
sinα
a

)

= tgα
a

(8).
N
mg
cosα

g
cosα

Выбираем соответствующие позиции для каждой буквы.

Ответ.
A – 3; Б – 2.

Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.

Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа

выразим массу газа.

Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.

Ответ.
48 г.

Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.

Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как

Ответ.
25 Дж.

Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?

Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха

По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.

φ
1 = 10 % ; φ
2 = 35 %

Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.

P
2
= φ
2
= 35 = 3,5
P
1
φ
1
10

Ответ.
Давление следует увеличить в 3,5 раза.

Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.

Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.

  1. Температура плавления вещества в данных условиях равна 232°С.
  2. Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
  3. Теплоемкость вещества в жидком и твердом состоянии одинакова.
  4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
  5. Процесс кристаллизации вещества занял более 25 минут.

Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:

1. Tемпература плавления вещества в данных условиях равна 232°С.

Второе верное утверждение это:

4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.

Ответ.
14.

В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.

U = ∑
n
U i =
0 (1);
i
= 1

где ∆U
– изменение внутренней энергии.

В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.

Ответ.
23.

Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)

Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.

Ответ.
от наблюдателя.

Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.

Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости

где d
– расстояние между пластинами.

Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.

q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл

Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.

Ответ.
20 мкКл.

Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется
  4. Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде

где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.

Ответ.

Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.

Используя график, выберите два верных утверждения и укажите в ответе их номера.

  1. К моменту времени t
    = 0,1 с изменение магнитного потока через контур равно 1 мВб.
  2. Индукционный ток в перемычке в интервале от t
    = 0,1 с t
    = 0,3 с максимален.
  3. Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
  4. Сила индукционного тока, текущего в перемычке, равна 64 мА.
  5. Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.

Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:

1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ

Ответ.
13.

По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.

Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .

Формула ЭДС самоиндукции имеет вид

при этом интервал времени дан по условию задачи

t
= 10 c – 5 c = 5 c

секунд и по графику определяем интервал изменения тока за это время:

I

= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.

Подставляем числовые значения в формулу (2), получаем

|

Ɛ
|

= 2 ·10 –6 В, или 2 мкВ.

Ответ.
2.

Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).

Запишем закон преломления

sinβ
=
sin50 = 0,4327 ≈ 0,433
1,77

Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем

А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;

Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.

Ответ
. 24.

Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза

+ → x
+ y
;

Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения

+ → x + y;

решая систему имеем, что x
= 1; y
= 2

Ответ.
1 – α
-частица; 2 – протона.

Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.

Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E

= mc
2 (1) и p
= mc
(2), тогда

E
= pc
(3),

где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:

E
2
= p
2
= 8,18;
E
1
p
1

Ответ округляем до десятых и получаем 8,2.

Ответ.
8,2.

Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:

Ответ.
21.

В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.

Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением

d
sinφ
= k
λ
(1),

где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)

Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.

Ответ.
42.

По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится;
  2. Уменьшится;
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид

закона Ома для участка цепи, из формулы (2), выразим напряжение

U
= I
R
(3).

По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.

Ответ.
13.

Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.

Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.

T
= 2π (1);

l

– длина математического маятника; g
– ускорение свободного падения.

По условию

Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса

Ответ.
14,4 м/с 2 .

Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?

Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера

F
А = I
LB
sinα
;

F
А = 0,6 Н

Ответ. F
А = 0,6 Н.

Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.

Решение.
Энергия магнитного поля катушки рассчитывается по формуле

По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.

I

1 2 =

2W
1
; I

2 2 =
2W
2
;
L
L

Тогда отношение токов

I

2 2

= 49; I

2

= 7
I
1 2
I

1

Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.

Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.

Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.

Ответ.
Загорится вторая лампа.

Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l

= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2

Решение.
Выполним поясняющий рисунок.

– Сила натяжения нити;

– Сила реакции дна сосуда;

a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;

– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.

По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);

F
a = Sl
ρ
в g
(2)

Рассмотрим моменты сил относительно точки подвеса спицы.

М
(Т
) = 0 – момент силы натяжения; (3)

М
(N) = NL
cosα
– момент силы реакции опоры; (4)

С учетом знаков моментов запишем уравнение

NL
cosα
+ Sl

ρ
в g
(L

l

) cosα
= SL
ρ
a

g

L
cosα
(7)
2 2

учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:

F д = [ 1 L
ρ
a

– (1 –

l

)l

ρ
в ]Sg
(8).

2 2L

Подставим числовые данные и получим, что

F
д = 0,025 Н.

Ответ.
F
д = 0,025 Н.

Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.

Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота

где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что

можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:

m
2 =
m
1
M
2
T
1
(5).
5 M
1
T
2

После подстановки числовых данных m
2 = 28 г.

Ответ.
m
2 = 28 г.

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.

Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид

C
U
2
+ L
I

2

= L
I
m
2
(1)
2 2 2

Для амплитудных (максимальных) значений запишем

а из уравнения (2) выразим

Подставим (4) в (3). В результате получим:

I

= I m
(5)

Таким образом, сила тока в катушке в момент времени t
равна

I
= 4,0 мА.

Ответ.
I

= 4,0 мА.

На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°

Решение.
Сделаем поясняющий рисунок

α
– угол падения луча;

β
– угол преломления луча в воде;

АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.

По закону преломления света

Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD

tgβ
= h
tgβ
= h
sinα

= h
sinβ

= h
sinα

(4)
cosβ

Получаем следующее выражение:

Подставим числовые значения в полученную формулу (5)

Ответ.
1,63 м.

В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.

ЕГЭ по физике

– экзамен, который не входит в перечень испытаний обязательных для сдачи всеми выпускниками. Физику выбирают потенциальные студенты инженерных специальностей. Причем, каждый ВУЗ устанавливает свою планку – в престижных учебных заведениях она может быть очень высокой. Это должен понимать выпускник, начиная подготовку к экзамену.
Цель экзамена

– проверка уровня знаний и умений, полученных в ходе школьного обучения, на соответствие нормам и стандартам, указанным в программе.

  • На экзамен отводится практически 4 часа – 235 минут, это время необходимо правильно распределить между заданиями, чтобы успешно справиться со всеми, не теряя ни одной минуты.
  • Разрешается брать с собой калькулятор, поскольку для выполнения заданий требуется множество сложных расчетов. Также можно взять линейку.
  • Работа состоит из трех частей, каждая имеет свои особенности, состоит из заданий разного уровня сложности.

Первая часть

экзаменационной работы состоит из обычных тестов с несколькими вариантами ответов, из которых требуется выбрать правильный. Цель первой части – проверка базовых знаний, умения применять теорию на практике на начальном уровне. При изучении новой темы в классе, подобные задания могли даваться для закрепления нового материала. Для успешного прохождения этого уровня, требуется выучить и повторить законы, теории, формулы, определения, чтобы иметь возможность воспроизвести их на экзамене. Также эта часть содержит задания, в которых требуется правильно установить соответствия. Формулируется задача и предлагается несколько вопросов к ней. К каждому вопросу необходимо подобрать правильный ответ из предложенных, и указать в бланке. Цель данной части испытания — проверка умения устанавливать связи между величинами, применять несколько формул и теорий, проводить вычисления на основе теоретических данных.
Вторая часть

делится на 2 блока. В первом блоке необходимо применять формулы, законы и теории для решения заданий и получения ответа. Экзаменуемому предлагаются варианты, из которых нужно выбрать правильный.
Во втором блоке – задачи, требуется предоставить детальное решение, полное объяснение каждого действия. Лица, проверяющие задание, должны также увидеть здесь формулы, законы, которые используются для решения – с них нужно начать детальный разбор задания.

Физика относится к сложным предметам, приблизительно каждый 15-1 сдает этот экзамен ежегодно, чтобы поступить в технический ВУЗ. Предполагается, что выпускник с такими целями не будет учить предмет «с нуля», чтобы подготовиться к ЕГЭ.
Чтобы удачно пройти испытание, необходимо:

  • Начинать повторение материала заранее, подходить к вопросу комплексно;
  • Активно применять теорию на практике – решать много заданий разного уровня сложности;
  • Заниматься самообразованием;
  • Проходить онлайн тестирование по вопросам за прошлые годы.

Эффективные помощники в подготовке – онлайн курсы, репетиторы. При помощи профессионального репетитора можно анализировать ошибки, быстро получать обратную связь. Онлайн курсы и ресурсы с заданиями помогут накопить опыт в решении различных заданий. «Решу ЕГЭ по физике» – возможность результативно тренироваться перед тестированием.

Изменений в заданиях ЕГЭ по физике на 2019
год нет.

Структура заданий ЕГЭ по физике-2019

Экзаменационная работа состоит из двух частей, включающих в себя 32 задания
.

Часть 1
содержит 27 заданий.

  • В заданиях 1–4, 8–10, 14, 15, 20, 25–27 ответом является целое число или конечная десятичная дробь.
  • Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность двух цифр.
  • Ответом к заданиям 19 и 22 являются два числа.

Часть 2
содержит 5 заданий. Ответ к заданиям 28–32 включает в себя подробное описание всего хода выполнения задания. Вторая часть заданий (с развёрнутым ответом) оцениваются экспертной комиссией на основе .

Темы ЕГЭ по физике, которые будут в экзаменационной работе

  1. Механика
    (кинематика, динамика, статика, законы сохранения в механике, механические колебания и волны).
  2. Молекулярная физика
    (молекулярно-кинетическая теория, термодинамика).
  3. Электродинамика и основы СТО
    (электрическое поле, постоянный ток, магнитное поле, электромагнитная индукция, электромагнитные колебания и волны, оптика, основы СТО).
  4. Квантовая физика и элементы астрофизики
    (корпускулярноволновой дуализм, физика атома, физика атомного ядра, элементы астрофизики).

Продолжительность ЕГЭ по физике

На выполнение всей экзаменационной работы отводится 235 минут
.

Примерное время на выполнение заданий различных частей работы составляет:

  1. для каждого задания с кратким ответом – 3–5 минут;
  2. для каждого задания с развернутым ответом – 15–20 минут.

Что можно брать на экзамен:

  • Используется непрограммируемый калькулятор (на каждого ученика) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка.
  • Перечень дополнительных устройств и , использование которых разрешено на ЕГЭ, утверждается Рособрнадзором.

Важно!!!
не стоит рассчитывать на шпаргалки, подсказки и использование технических средств (телефонов, планшетов) на экзамене. Видеонаблюдение на ЕГЭ-2019 усилят дополнительными камерами.

Баллы ЕГЭ по физике

  • 1 балл — за 1-4, 8, 9, 10, 13, 14, 15, 19, 20, 22, 23, 25, 26, 27 задания.
  • 2 балла — 5, 6, 7, 11, 12, 16, 17, 18, 21, 24.
  • З балла — 28, 29, 30, 31, 32.

Всего: 52 баллов
(максимальный первичный балл).

Что необходимо знать при подготовки заданий в ЕГЭ:

  • Знать/понимать смысл физических понятий, величин, законов, принципов, постулатов.
  • Уметь описывать и объяснять физические явления и свойства тел (включая космические объекты), результаты экспериментов… приводить примеры практического использования физических знаний
  • Отличать гипотезы от научной теории, делать выводы на основе эксперимента и т.д.
  • Уметь применять полученные знания при решении физических задач.
  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

С чего начать подготовку к ЕГЭ по физике:

  1. Изучать теорию, необходимую для каждого заданий.
  2. Тренироваться в тестовых заданиях по физике, разработанные на основе ЕГЭ. На нашем сайте задания и варианты по физике будут пополняться.
  3. Правильно распределяй время.

Желаем успеха!

Образовательный портал «РЕШУ ЕГЭ» — мой личный благотворительный проект. Он развивается мной, а также моими друзьями и коллегами, заботящимися об образовании детей более, чем о себе самих. Никем не финансируется.

Дистанционная обучающая система для подготовки к государственным экзаменам «РЕШУ ЕГЭ» (http://решуегэ.рф, http://ege.sdamgia.ru) создана творческим объединением «Центр интеллектуальных инициатив». Руководитель — Гущин Д. Д., учитель математики, физики и информатики, почетный работник общего образования РФ, Учитель года России — 2007, член Федеральной комиссии по разработке контрольно-измерительных материалов по математике для проведения единого государственного экзамена по математике (2009—2010), эксперт Федеральной предметной комиссии ЕГЭ по математике (2011—2012), заместитель председателя региональной предметной комиссии ГИА по математике (2012—2014), ведущий эксперт ЕГЭ по математике (2014—2015), федеральный эксперт (2015—2017).

СЕРВИСЫ ОБРАЗОВАТЕЛЬНОГО ПОРТАЛА «РЕШУ ЕГЭ»

  • Для организации тематического повторения разработан классификатор экзаменационных заданий, позволяющий последовательно повторять те или иные небольшие темы и сразу же проверять свои знания по ним.
  • Для организации текущего контроля знаний предоставляется возможность включения в тренировочные варианты работ произвольного количества заданий каждого экзаменационного типа.
  • Для проведения итоговых контрольных работ предусмотрено прохождение тестирования в формате ЕГЭ нынешнего года по одному из предустановленных в системе вариантов или по индивидуальному случайно сгенерированному варианту.
  • Для контроля уровня подготовки система ведет статистику изученных тем и решенных заданий.
  • Для ознакомления с правилами проверки экзаменационных работ дана возможность узнать критерии проверки заданий с развернутым ответом и проверить в соответствии с ними задания с открытым ответом.
  • Для предварительной оценки уровня подготовки после прохождения тестирования сообщается прогноз тестового экзаменационного балла по стобалльной шкале.

Каталоги заданий разрабатываются специально для портала «РЕШУ ЕГЭ» и являются интеллектуальной собственностью редакции. Задания открытого банка заданий ФИПИ, демонстрационные версии экзаменов, задания прошедших экзаменов, разработанные Федеральным институтом педагогических измерений, диагностические работы, подготовленные Московским институтом открытого образования, задания из литературных источников используются в соответствии с лицензиями правообладателей. Пользователи портала также имеют возможность добавлять в каталоги свои собственные задания, публиковать теоретические материалы, создавать обучающие курсы, переписываться со своими читателями.

Все используемые в системе задания снабжены ответами и подробными решениями.

Если вы планируете регулярно пользоваться сайтом, зарегистрируйтесь. Это позволит системе вести статистику решенных вами заданий и давать рекомендации по подготовке к экзамену.

Все сервисы портала бесплатны.

Сделано в Санкт-Петербурге, Норильске, Славянске-на-Кубани, Воронеже, Озёрске, Москве, Пензе, Новочеркасске, Париже.

Копирование материалов сайта в том числе, но не ограничиваясь: рубрикаторов, заданий, ответов, пояснений и решений, ответов на вопросы читателей, справочников категорически запрещено. Работа на портале означает согласие с этими условиями. Вы можете поставить ссылку на страницы проекта.

Информируем!


Генеральный директор ООО «Экзамер» Дегтярёв Артём из Таганрога назвал страницы своего платного сайта «РЕШУ ЕГЭ». Ловкий и креативный директор объяснил, что такова политика его компании. Внутри портала обучающие материалы с ошибками.

Подготовка к ОГЭ и ЕГЭ

Среднее общее образование

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Перышкина. Физика (7-9)

Разбираем задания ЕГЭ по физике (Вариант С) с учителем.

Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).

В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.

На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.

Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.

S
=
(30 + 20) с
10 м/с = 250 м.
2

Ответ.
250 м.

Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.

Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза

a

=

v
= (8 – 2) м/с = 2 м/с 2 .
t
3 с

На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.

+ = (1)

Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем

T
mg
= ma

(2);

из формулы (2) модуль силы натяжения

Т
= m
(g
+ a

) = 100 кг (10 + 2) м/с 2 = 1200 Н.

Ответ
. 1200 Н.

Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?

Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.

Тр + + = (1)

Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):

N
= 16 Н · 1,5 м/с = 24 Вт.

Ответ.
24 Вт.

Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.

Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.

= T ; m
= T
2
; m
= k
T
2
; m
= 200 H/м
(4 с) 2 = 81,14 кг ≈ 81 кг.

k

2

2
39,438

Ответ:
81 кг.

На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.

  1. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
  2. Изображенная на рисунке система блоков не дает выигрыша в силе.
  3. h
    , нужно вытянуть участок веревки длиной 3h
    .
  4. Для того чтобы медленно поднять груз на высоту h
    h
    .

Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:

  1. Для того чтобы медленно поднять груз на высоту h
    , нужно вытянуть участок веревки длиной 2h
    .
  2. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.

Ответ.
45.

В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?

  1. Увеличивается;
  2. Уменьшается;
  3. Не изменяется.

Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a

, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный

Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a

. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a

mg
= 0; (1) Выразим силу натяжения F
упр = mg
F a

(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a

= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a

, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.

Ответ.
13.

Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.

Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Б) Коэффициент трения бруска о наклонную плоскость

3) mg
cosα

Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;

Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.

Запишем основное уравнение динамики:

Тр + = (1)

Запишем данное уравнение (1) для проекции сил и ускорения.

На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=


mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.

На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a

; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma

(5); F
тр = m
(g
sinα
a

) (6); Помним, что сила трения пропорциональна силе нормального давления N
.

По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.

μ
=
F
тр
= m
(g
sinα
a

)

= tgα
a

(8).
N
mg
cosα

g
cosα

Выбираем соответствующие позиции для каждой буквы.

Ответ.
A – 3; Б – 2.

Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.

Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа

выразим массу газа.

Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.

Ответ.
48 г.

Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.

Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как

Ответ.
25 Дж.

Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?

Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха

По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.

φ
1 = 10 % ; φ
2 = 35 %

Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.

P
2
= φ
2
= 35 = 3,5
P
1
φ
1
10

Ответ.
Давление следует увеличить в 3,5 раза.

Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.

Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.

  1. Температура плавления вещества в данных условиях равна 232°С.
  2. Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
  3. Теплоемкость вещества в жидком и твердом состоянии одинакова.
  4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
  5. Процесс кристаллизации вещества занял более 25 минут.

Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:

1. Tемпература плавления вещества в данных условиях равна 232°С.

Второе верное утверждение это:

4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.

Ответ.
14.

В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.

U = ∑
n
U i =
0 (1);
i
= 1

где ∆U
– изменение внутренней энергии.

В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.

Ответ.
23.

Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)

Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.

Ответ.
от наблюдателя.

Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.

Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости

где d
– расстояние между пластинами.

Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.

q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл

Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.

Ответ.
20 мкКл.

Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется
  4. Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде

где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.

Ответ.

Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.

Используя график, выберите два верных утверждения и укажите в ответе их номера.

  1. К моменту времени t
    = 0,1 с изменение магнитного потока через контур равно 1 мВб.
  2. Индукционный ток в перемычке в интервале от t
    = 0,1 с t
    = 0,3 с максимален.
  3. Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
  4. Сила индукционного тока, текущего в перемычке, равна 64 мА.
  5. Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.

Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:

1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ

Ответ.
13.

По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.

Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .

Формула ЭДС самоиндукции имеет вид

при этом интервал времени дан по условию задачи

t
= 10 c – 5 c = 5 c

секунд и по графику определяем интервал изменения тока за это время:

I

= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.

Подставляем числовые значения в формулу (2), получаем

|

Ɛ
|

= 2 ·10 –6 В, или 2 мкВ.

Ответ.
2.

Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).

Запишем закон преломления

sinβ
=
sin50 = 0,4327 ≈ 0,433
1,77

Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем

А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;

Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.

Ответ
. 24.

Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза

+ → x
+ y
;

Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения

+ → x + y;

решая систему имеем, что x
= 1; y
= 2

Ответ.
1 – α
-частица; 2 – протона.

Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.

Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E

= mc
2 (1) и p
= mc
(2), тогда

E
= pc
(3),

где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:

E
2
= p
2
= 8,18;
E
1
p
1

Ответ округляем до десятых и получаем 8,2.

Ответ.
8,2.

Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:

Ответ.
21.

В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.

Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением

d
sinφ
= k
λ
(1),

где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)

Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.

Ответ.
42.

По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится;
  2. Уменьшится;
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид

закона Ома для участка цепи, из формулы (2), выразим напряжение

U
= I
R
(3).

По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.

Ответ.
13.

Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.

Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.

T
= 2π (1);

l

– длина математического маятника; g
– ускорение свободного падения.

По условию

Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса

Ответ.
14,4 м/с 2 .

Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?

Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера

F
А = I
LB
sinα
;

F
А = 0,6 Н

Ответ. F
А = 0,6 Н.

Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.

Решение.
Энергия магнитного поля катушки рассчитывается по формуле

По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.

I

1 2 =

2W
1
; I

2 2 =
2W
2
;
L
L

Тогда отношение токов

I

2 2

= 49; I

2

= 7
I
1 2
I

1

Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.

Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.

Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.

Ответ.
Загорится вторая лампа.

Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l

= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2

Решение.
Выполним поясняющий рисунок.

– Сила натяжения нити;

– Сила реакции дна сосуда;

a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;

– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.

По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);

F
a = Sl
ρ
в g
(2)

Рассмотрим моменты сил относительно точки подвеса спицы.

М
(Т
) = 0 – момент силы натяжения; (3)

М
(N) = NL
cosα
– момент силы реакции опоры; (4)

С учетом знаков моментов запишем уравнение

NL
cosα
+ Sl

ρ
в g
(L

l

) cosα
= SL
ρ
a

g

L
cosα
(7)
2 2

учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:

F д = [ 1 L
ρ
a

– (1 –

l

)l

ρ
в ]Sg
(8).

2 2L

Подставим числовые данные и получим, что

F
д = 0,025 Н.

Ответ.
F
д = 0,025 Н.

Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.

Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота

где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что

можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:

m
2 =
m
1
M
2
T
1
(5).
5 M
1
T
2

После подстановки числовых данных m
2 = 28 г.

Ответ.
m
2 = 28 г.

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.

Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид

C
U
2
+ L
I

2

= L
I
m
2
(1)
2 2 2

Для амплитудных (максимальных) значений запишем

а из уравнения (2) выразим

Подставим (4) в (3). В результате получим:

I

= I m
(5)

Таким образом, сила тока в катушке в момент времени t
равна

I
= 4,0 мА.

Ответ.
I

= 4,0 мА.

На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°

Решение.
Сделаем поясняющий рисунок

α
– угол падения луча;

β
– угол преломления луча в воде;

АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.

По закону преломления света

Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD

tgβ
= h
tgβ
= h
sinα

= h
sinβ

= h
sinα

(4)
cosβ

Получаем следующее выражение:

Подставим числовые значения в полученную формулу (5)

Ответ.
1,63 м.

В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.

Онлайн тест ЕГЭ по физике, который вы можете пройти на образовательном портале сайт, поможет вам лучше подготовиться к единому государственному экзамену. ЕГЭ – это очень ответственное мероприятие, от которого будет завесить поступление в институт. А от будет зависеть ваша будущая профессия. Поэтому следует ответственно подойти к вопросу подготовки к ЕГЭ. Лучше всего воспользоваться всеми доступными средствами, что бы улучшить свой результат по такому ответственному экзамену.

Различные варианты подготовки к ЕГЭ

Каждый сам решает, каким образом готовить к ЕГЭ. Кто-то полностью надеются на школьные знания. И некоторым удаётся показать отличные результаты благодаря исключительно школьной подготовке. Но тут определяющую роль играет не конкретная школа, а школьник, который ответственно относился к занятиям и занимался саморазвитием. Другие прибегают к помощи репетиторов, которые в короткие сроки могут натаскать школьника на решений типовых задач из ЕГЭ. Но к выбору репетитора стоит отнестись ответственно, ведь многие рассматривают репетиторство как источник заработка и не заботятся о будущем своего подопечного. Кто-то поступают на специализированные курсы подготовке к ЕГЭ. Тут опытные специалисты учат детей справляться с различными задачами и готовя не только к ЕГЭ, но и поступлению в институт. Лучше всего если такие курсы действуют при . Тогда профессора из университета будут учить ребёнка. Но есть и самостоятельные способы подготовки к ЕГЭ – онлайн тесты.

Пробные онлайн тесты ЕГЭ по физике

На образовательном портале Uchistut.ru можно пройти пробные онлайн тесты ЕГЭ по физике, что бы лучше подготовиться к реальному ЕГЭ. Тренировка в интернете позволит понять, какие бывают вопросы на ЕГЭ. Так же можно выявить свои слабые и сильные стороны. Так как на пробных онлайн тестах не ограничено время, то можно найти в учебниках ответ на задачу, решение которого не известно. Постоянные тренировки помогут снизить уровень стреса на реальном экзамене. А специалисты утверждают, что более тридцати процентов неудач на ЕГЭ связано именно со стрессом и растерянностью во время ЕГЭ. Для ребёнка это очень большая нагрузка, ответственность, которая сильно давит на школьника и мешает ему сосредоточиться на поставленных заданиях. А ЕГЭ по физики считается одним из самых сложных, поэтому подготовиться к нему необходимо как можно лучше. Ведь от результатов ЕГЭ по физике зависит поступлении в лучшие технические ВУЗы Москвы. А это очень престижные учебные заведения, попасть в которые мечтают многие.

Обновлено: 21.09.2019

103583

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter

Подготовка к ОГЭ и ЕГЭ

Среднее общее образование

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Перышкина. Физика (7-9)

Разбираем задания ЕГЭ по физике (Вариант С) с учителем.

Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).

В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.

На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.

Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.

S
=
(30 + 20) с
10 м/с = 250 м.
2

Ответ.
250 м.

Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.

Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза

a

=

v
= (8 – 2) м/с = 2 м/с 2 .
t
3 с

На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.

+ = (1)

Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем

T
mg
= ma

(2);

из формулы (2) модуль силы натяжения

Т
= m
(g
+ a

) = 100 кг (10 + 2) м/с 2 = 1200 Н.

Ответ
. 1200 Н.

Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?

Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.

Тр + + = (1)

Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):

N
= 16 Н · 1,5 м/с = 24 Вт.

Ответ.
24 Вт.

Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.

Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.

= T ; m
= T
2
; m
= k
T
2
; m
= 200 H/м
(4 с) 2 = 81,14 кг ≈ 81 кг.

k

2

2
39,438

Ответ:
81 кг.

На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.

  1. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
  2. Изображенная на рисунке система блоков не дает выигрыша в силе.
  3. h
    , нужно вытянуть участок веревки длиной 3h
    .
  4. Для того чтобы медленно поднять груз на высоту h
    h
    .

Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:

  1. Для того чтобы медленно поднять груз на высоту h
    , нужно вытянуть участок веревки длиной 2h
    .
  2. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.

Ответ.
45.

В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?

  1. Увеличивается;
  2. Уменьшается;
  3. Не изменяется.

Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a

, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный

Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a

. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a

mg
= 0; (1) Выразим силу натяжения F
упр = mg
F a

(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a

= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a

, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.

Ответ.
13.

Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.

Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Б) Коэффициент трения бруска о наклонную плоскость

3) mg
cosα

Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;

Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.

Запишем основное уравнение динамики:

Тр + = (1)

Запишем данное уравнение (1) для проекции сил и ускорения.

На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=


mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.

На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a

; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma

(5); F
тр = m
(g
sinα
a

) (6); Помним, что сила трения пропорциональна силе нормального давления N
.

По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.

μ
=
F
тр
= m
(g
sinα
a

)

= tgα
a

(8).
N
mg
cosα

g
cosα

Выбираем соответствующие позиции для каждой буквы.

Ответ.
A – 3; Б – 2.

Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.

Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа

выразим массу газа.

Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.

Ответ.
48 г.

Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.

Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как

Ответ.
25 Дж.

Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?

Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха

По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.

φ
1 = 10 % ; φ
2 = 35 %

Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.

P
2
= φ
2
= 35 = 3,5
P
1
φ
1
10

Ответ.
Давление следует увеличить в 3,5 раза.

Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.

Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.

  1. Температура плавления вещества в данных условиях равна 232°С.
  2. Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
  3. Теплоемкость вещества в жидком и твердом состоянии одинакова.
  4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
  5. Процесс кристаллизации вещества занял более 25 минут.

Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:

1. Tемпература плавления вещества в данных условиях равна 232°С.

Второе верное утверждение это:

4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.

Ответ.
14.

В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.

U = ∑
n
U i =
0 (1);
i
= 1

где ∆U
– изменение внутренней энергии.

В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.

Ответ.
23.

Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)

Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.

Ответ.
от наблюдателя.

Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.

Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости

где d
– расстояние между пластинами.

Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.

q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл

Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.

Ответ.
20 мкКл.

Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется
  4. Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде

где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.

Ответ.

Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.

Используя график, выберите два верных утверждения и укажите в ответе их номера.

  1. К моменту времени t
    = 0,1 с изменение магнитного потока через контур равно 1 мВб.
  2. Индукционный ток в перемычке в интервале от t
    = 0,1 с t
    = 0,3 с максимален.
  3. Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
  4. Сила индукционного тока, текущего в перемычке, равна 64 мА.
  5. Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.

Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:

1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ

Ответ.
13.

По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.

Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .

Формула ЭДС самоиндукции имеет вид

при этом интервал времени дан по условию задачи

t
= 10 c – 5 c = 5 c

секунд и по графику определяем интервал изменения тока за это время:

I

= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.

Подставляем числовые значения в формулу (2), получаем

|

Ɛ
|

= 2 ·10 –6 В, или 2 мкВ.

Ответ.
2.

Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).

Запишем закон преломления

sinβ
=
sin50 = 0,4327 ≈ 0,433
1,77

Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем

А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;

Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.

Ответ
. 24.

Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза

+ → x
+ y
;

Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения

+ → x + y;

решая систему имеем, что x
= 1; y
= 2

Ответ.
1 – α
-частица; 2 – протона.

Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.

Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E

= mc
2 (1) и p
= mc
(2), тогда

E
= pc
(3),

где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:

E
2
= p
2
= 8,18;
E
1
p
1

Ответ округляем до десятых и получаем 8,2.

Ответ.
8,2.

Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:

Ответ.
21.

В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.

Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением

d
sinφ
= k
λ
(1),

где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)

Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.

Ответ.
42.

По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится;
  2. Уменьшится;
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид

закона Ома для участка цепи, из формулы (2), выразим напряжение

U
= I
R
(3).

По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.

Ответ.
13.

Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.

Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.

T
= 2π (1);

l

– длина математического маятника; g
– ускорение свободного падения.

По условию

Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса

Ответ.
14,4 м/с 2 .

Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?

Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера

F
А = I
LB
sinα
;

F
А = 0,6 Н

Ответ. F
А = 0,6 Н.

Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.

Решение.
Энергия магнитного поля катушки рассчитывается по формуле

По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.

I

1 2 =

2W
1
; I

2 2 =
2W
2
;
L
L

Тогда отношение токов

I

2 2

= 49; I

2

= 7
I
1 2
I

1

Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.

Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.

Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.

Ответ.
Загорится вторая лампа.

Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l

= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2

Решение.
Выполним поясняющий рисунок.

– Сила натяжения нити;

– Сила реакции дна сосуда;

a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;

– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.

По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);

F
a = Sl
ρ
в g
(2)

Рассмотрим моменты сил относительно точки подвеса спицы.

М
(Т
) = 0 – момент силы натяжения; (3)

М
(N) = NL
cosα
– момент силы реакции опоры; (4)

С учетом знаков моментов запишем уравнение

NL
cosα
+ Sl

ρ
в g
(L

l

) cosα
= SL
ρ
a

g

L
cosα
(7)
2 2

учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:

F д = [ 1 L
ρ
a

– (1 –

l

)l

ρ
в ]Sg
(8).

2 2L

Подставим числовые данные и получим, что

F
д = 0,025 Н.

Ответ.
F
д = 0,025 Н.

Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.

Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота

где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что

можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:

m
2 =
m
1
M
2
T
1
(5).
5 M
1
T
2

После подстановки числовых данных m
2 = 28 г.

Ответ.
m
2 = 28 г.

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.

Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид

C
U
2
+ L
I

2

= L
I
m
2
(1)
2 2 2

Для амплитудных (максимальных) значений запишем

а из уравнения (2) выразим

Подставим (4) в (3). В результате получим:

I

= I m
(5)

Таким образом, сила тока в катушке в момент времени t
равна

I
= 4,0 мА.

Ответ.
I

= 4,0 мА.

На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°

Решение.
Сделаем поясняющий рисунок

α
– угол падения луча;

β
– угол преломления луча в воде;

АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.

По закону преломления света

Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD

tgβ
= h
tgβ
= h
sinα

= h
sinβ

= h
sinα

(4)
cosβ

Получаем следующее выражение:

Подставим числовые значения в полученную формулу (5)

Ответ.
1,63 м.

В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.

Подготовка к ОГЭ и ЕГЭ

Среднее общее образование

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Перышкина. Физика (7-9)

Разбираем задания ЕГЭ по физике (Вариант С) с учителем.

Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).

В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.

На рисунке представлен график зависимости модуля скорости от времени t
. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.

Решение.
Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v
= 10 м/с, т.е.

S
=
(30 + 20) с
10 м/с = 250 м.
2

Ответ.
250 м.

Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V
груза на ось, направленную вверх, от времени t
. Определите модуль силы натяжения троса в течение подъема.

Решение.
По графику зависимости проекции скорости v
груза на ось, направленную вертикально вверх, от времени t
, можно определить проекцию ускорения груза

a

=

v
= (8 – 2) м/с = 2 м/с 2 .
t
3 с

На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса , направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.

+ = (1)

Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем

T
mg
= ma

(2);

из формулы (2) модуль силы натяжения

Т
= m
(g
+ a

) = 100 кг (10 + 2) м/с 2 = 1200 Н.

Ответ
. 1200 Н.

Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F
?

Решение.
Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.

Тр + + = (1)

Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила , с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х
. Проекция силы F
положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F
cosα – F
тр = 0; (1) выразим проекцию силы F
, это F
cosα = F
тр = 16 Н; (2) тогда мощность, развиваемая силой , будет равна N
= F
cosα V
(3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):

N
= 16 Н · 1,5 м/с = 24 Вт.

Ответ.
24 Вт.

Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x
груза от времени t
. Определите, чему равна масса груза. Ответ округлите до целого числа.

Решение.
Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х
от времени t
, определим период колебаний груза. Период колебаний равен Т
= 4 с; из формулы Т
= 2π
выразим массу m
груза.

= T ; m
= T
2
; m
= k
T
2
; m
= 200 H/м
(4 с) 2 = 81,14 кг ≈ 81 кг.

k

2

2
39,438

Ответ:
81 кг.

На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два
верных утверждения и укажите в ответе их номера.

  1. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
  2. Изображенная на рисунке система блоков не дает выигрыша в силе.
  3. h
    , нужно вытянуть участок веревки длиной 3h
    .
  4. Для того чтобы медленно поднять груз на высоту h
    h
    .

Решение.
В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:

  1. Для того чтобы медленно поднять груз на высоту h
    , нужно вытянуть участок веревки длиной 2h
    .
  2. Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.

Ответ.
45.

В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?

  1. Увеличивается;
  2. Уменьшается;
  3. Не изменяется.

Решение.
Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити F
упр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила a

, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный

Плотность железа 7800 кг/м 3 , а алюминиевого груза 2700 кг/м 3 . Следовательно, V
ж V a

. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде F
упр + F a

mg
= 0; (1) Выразим силу натяжения F
упр = mg
F a

(2); архимедова сила зависит от плотности жидкости и объема погруженной части тела F a

= ρgV
п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше V
ж V a

, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.

Ответ.
13.

Брусок массой m
соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a
, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.

Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Б) Коэффициент трения бруска о наклонную плоскость

3) mg
cosα

Решение.
Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;

Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.

Запишем основное уравнение динамики:

Тр + = (1)

Запишем данное уравнение (1) для проекции сил и ускорения.

На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY N y
= N
; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mg y
=


mg
cosα
; проекция вектора ускорения a
y
= 0, так как вектор ускорения перпендикулярен оси. Имеем N
mg
cosα
= 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N
= mg
cosα
(3). Запишем проекции на ось OX.

На ось OX: проекция силы N
равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mg x
= mg
sinα
(4) из прямоугольного треугольника. Проекция ускорения положительная a
x
= a

; Тогда уравнение (1) запишем с учетом проекции mg
sinα – F
тр = ma

(5); F
тр = m
(g
sinα
a

) (6); Помним, что сила трения пропорциональна силе нормального давления N
.

По определению F
тр = μN
(7), выразим коэффициент трения бруска о наклонную плоскость.

μ
=
F
тр
= m
(g
sinα
a

)

= tgα
a

(8).
N
mg
cosα

g
cosα

Выбираем соответствующие позиции для каждой буквы.

Ответ.
A – 3; Б – 2.

Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.

Решение.
Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T
= t
°С + 273, объем V
= 33,2 л = 33,2 · 10 –3 м 3 ; Давление переводим P
= 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа

выразим массу газа.

Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.

Ответ.
48 г.

Задание 9.
Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.

Решение.
Во-первых, газ одноатомный число степеней свободы i
= 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q
= 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U
+ A
г; (1) выразим работу газа A
г = –∆U
(2); Изменение внутренней энергии для одноатомного газа запишем как

Ответ.
25 Дж.

Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?

Решение.
Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха

По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.

φ
1 = 10 % ; φ
2 = 35 %

Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.

P
2
= φ
2
= 35 = 3,5
P
1
φ
1
10

Ответ.
Давление следует увеличить в 3,5 раза.

Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.

Выберите из предложенного перечня два
утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.

  1. Температура плавления вещества в данных условиях равна 232°С.
  2. Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
  3. Теплоемкость вещества в жидком и твердом состоянии одинакова.
  4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
  5. Процесс кристаллизации вещества занял более 25 минут.

Решение.
Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:

1. Tемпература плавления вещества в данных условиях равна 232°С.

Второе верное утверждение это:

4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.

Ответ.
14.

В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.

U = ∑
n
U i =
0 (1);
i
= 1

где ∆U
– изменение внутренней энергии.

В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.

Ответ.
23.

Протон p
, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)

Решение.
На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.

Ответ.
от наблюдателя.

Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.

Решение.
Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10 –6 Ф, расстояние между пластинами d
= 2 · 10 –3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости

где d
– расстояние между пластинами.

Выразим напряжение U
= E · d
(4); Подставим (4) в (2) и рассчитаем заряд конденсатора.

q
= C
· Ed
= 50 · 10 –6 · 200 · 0,002 = 20 мкКл

Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.

Ответ.
20 мкКл.

Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется
  4. Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Решение.
В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде

где n
2 – абсолютный показатель преломления стекла, среда куда идет свет; n
1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n
1 = 1. α
– угол падения луча на поверхность стеклянного полуцилиндра, β
– угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.

Ответ.

Медная перемычка в момент времени t
0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф
вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t
так, как показано на графике.

Используя график, выберите два верных утверждения и укажите в ответе их номера.

  1. К моменту времени t
    = 0,1 с изменение магнитного потока через контур равно 1 мВб.
  2. Индукционный ток в перемычке в интервале от t
    = 0,1 с t
    = 0,3 с максимален.
  3. Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
  4. Сила индукционного тока, текущего в перемычке, равна 64 мА.
  5. Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.

Решение.
По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф
меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:

1) К моменту времени t
= 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф
= (1 – 0) · 10 –3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ

Ответ.
13.

По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.

Решение.
Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10 –3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10 –3 .

Формула ЭДС самоиндукции имеет вид

при этом интервал времени дан по условию задачи

t
= 10 c – 5 c = 5 c

секунд и по графику определяем интервал изменения тока за это время:

I

= 30 · 10 –3 – 20 · 10 –3 = 10 · 10 –3 = 10 –2 A.

Подставляем числовые значения в формулу (2), получаем

|

Ɛ
|

= 2 ·10 –6 В, или 2 мкВ.

Ответ.
2.

Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n
2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Решение.
Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n
2 = 1,77; n
1 = 1 (воздух).

Запишем закон преломления

sinβ
=
sin50 = 0,4327 ≈ 0,433
1,77

Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем

А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;

Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.

Ответ
. 24.

Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза

+ → x
+ y
;

Решение.
При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения

+ → x + y;

решая систему имеем, что x
= 1; y
= 2

Ответ.
1 – α
-частица; 2 – протона.

Модуль импульса первого фотона равен 1,32 · 10 –28 кг·м/с, что на 9,48 · 10 –28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E 2 /E 1 второго и первого фотонов. Ответ округлите до десятых долей.

Решение.
Импульс второго фотона больше импульса первого фотона по условию значит можно представить p
2 = p
1 + Δp
(1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E

= mc
2 (1) и p
= mc
(2), тогда

E
= pc
(3),

где E
– энергия фотона, p
– импульс фотона, m – масса фотона, c
= 3 · 10 8 м/с – скорость света. С учетом формулы (3) имеем:

E
2
= p
2
= 8,18;
E
1
p
1

Ответ округляем до десятых и получаем 8,2.

Ответ.
8,2.

Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличилась;
  2. Уменьшилась;
  3. Не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Позитронный β
– распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:

Ответ.
21.

В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.

Решение.
Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением

d
sinφ
= k
λ
(1),

где d
– период дифракционной решетки, φ
– угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ
– длина световой волны, k
– целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)

Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.

Ответ.
42.

По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится;
  2. Уменьшится;
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Решение.
Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид

закона Ома для участка цепи, из формулы (2), выразим напряжение

U
= I
R
(3).

По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.

Ответ.
13.

Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.

Решение.
Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.

T
= 2π (1);

l

– длина математического маятника; g
– ускорение свободного падения.

По условию

Выразим из (3) g
п = 14,4 м/с 2 . Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса

Ответ.
14,4 м/с 2 .

Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В
= 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?

Решение.
Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера

F
А = I
LB
sinα
;

F
А = 0,6 Н

Ответ. F
А = 0,6 Н.

Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.

Решение.
Энергия магнитного поля катушки рассчитывается по формуле

По условию W
1 = 120 Дж, тогда W
2 = 120 + 5760 = 5880 Дж.

I

1 2 =

2W
1
; I

2 2 =
2W
2
;
L
L

Тогда отношение токов

I

2 2

= 49; I

2

= 7
I
1 2
I

1

Ответ.
Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.

Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.

Решение.
Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.

Ответ.
Загорится вторая лампа.

Алюминиевая спица длиной L
= 25 см и площадью поперечного сечения S
= 0,1 см 2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l

= 10 см. Найти силу F
, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρ
а = 2,7 г/см 3 , плотность воды ρ
в = 1,0 г/см 3 . Ускорение свободного падения g
= 10 м/с 2

Решение.
Выполним поясняющий рисунок.

– Сила натяжения нити;

– Сила реакции дна сосуда;

a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;

– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.

По определению масса спицы m
и модуль архимедовой силы выражаются следующим образом: m
= SL
ρ
a (1);

F
a = Sl
ρ
в g
(2)

Рассмотрим моменты сил относительно точки подвеса спицы.

М
(Т
) = 0 – момент силы натяжения; (3)

М
(N) = NL
cosα
– момент силы реакции опоры; (4)

С учетом знаков моментов запишем уравнение

NL
cosα
+ Sl

ρ
в g
(L

l

) cosα
= SL
ρ
a

g

L
cosα
(7)
2 2

учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе F
д с которой спица давит на дно сосуда запишем N
= F
д и из уравнения (7) выразим эту силу:

F д = [ 1 L
ρ
a

– (1 –

l

)l

ρ
в ]Sg
(8).

2 2L

Подставим числовые данные и получим, что

F
д = 0,025 Н.

Ответ.
F
д = 0,025 Н.

Баллон, содержащий m
1 = 1 кг азота, при испытании на прочность взорвался при температуре t
1 = 327°С. Какую массу водорода m
2 можно было бы хранить в таком баллоне при температуре t
2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M
1 = 28 г/моль, водорода M
2 = 2 г/моль.

Решение.
Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота

где V
– объем баллона, T
1 = t
1 + 273°C. По условию водород можно хранить при давлении p
2 = p 1 /5; (3) Учитывая, что

можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:

m
2 =
m
1
M
2
T
1
(5).
5 M
1
T
2

После подстановки числовых данных m
2 = 28 г.

Ответ.
m
2 = 28 г.

В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности I
m
= 5 мА, а амплитуда напряжения на конденсаторе U m
= 2,0 В. В момент времени t
напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.

Решение.
В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид

C
U
2
+ L
I

2

= L
I
m
2
(1)
2 2 2

Для амплитудных (максимальных) значений запишем

а из уравнения (2) выразим

Подставим (4) в (3). В результате получим:

I

= I m
(5)

Таким образом, сила тока в катушке в момент времени t
равна

I
= 4,0 мА.

Ответ.
I

= 4,0 мА.

На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°

Решение.
Сделаем поясняющий рисунок

α
– угол падения луча;

β
– угол преломления луча в воде;

АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.

По закону преломления света

Рассмотрим прямоугольный ΔАDВ. В нем АD = h
, тогда DВ = АD

tgβ
= h
tgβ
= h
sinα

= h
sinβ

= h
sinα

(4)
cosβ

Получаем следующее выражение:

Подставим числовые значения в полученную формулу (5)

Ответ.
1,63 м.

В рамках подготовки к ЕГЭ предлагаем вам ознакомиться с рабочей программой по физике для 7–9 класса к линии УМК Перышкина А. В.
и рабочей программой углубленного уровня для 10-11 классов к УМК Мякишева Г.Я.
Программы доступны для просмотра и бесплатного скачивания всем зарегистрированным пользователям.

1)

ЕДИНЫЙ ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ПО ФИЗИКЕ ДЛИТСЯ




235
мин

2) СТРУКТУРА КИМов — 2018 и 2019 по сравнению с 2017г. несколько ИЗМЕНИЛАСЬ:

Вариант экзаменационной работы будет состоять из двух частей и включит в себя
32 задания. Часть 1 будет содержать 24 задания с кратким ответом, в том числе задания с самостоятельной записью ответа в виде числа, двух чисел или слова, а также задания на установление
соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр. Часть 2 будет содержать 8 заданий, объединенных общим видом деятельности – решение задач.
Из них 3 задания с кратким ответом (25–27) и 5 заданий (28–32), для которых необходимо привести развернутый ответ. В работу будут включены задания трех уровней сложности. Задания базового уровня
включены в часть 1 работы (18 заданий, из которых 13 заданий с записью ответа в виде числа, двух чисел или слова и 5 заданий на соответствие и множественный выбор). Задания повышенного
уровня распределены между частями 1 и 2 экзаменационной работы: 5 заданий с кратким ответом в части 1, 3 задания с кратким ответом и 1 задание с развернутым ответом в части 2. Последние четыре
задачи части 2 являются заданиями высокого уровня сложности. Часть 1 экзаменационной работы будет включать два блока заданий: первый проверяет освоение понятийного аппарата школьного курса
физики, а второй – овладение методологическими умениями. Первый блок включает 21 задание, которые группируются, исходя из тематической принадлежности: 7 заданий по механике, 5 заданий по МКТ и
термодинамике, 6 заданий по электродинамике и 3 по квантовой физике.

Новым заданием базового уровня сложности является последнее задание первой части (24 позиция), приуроченное к возвращению курса астрономии в школьную программу. Задание имеет
характеристику типа «выбор 2 суждений из 5».
Задание 24, как и другие аналогичные задания в
экзаменационной работе, оценивается максимально в 2 балла, если верно указаны оба элемента ответа, и в 1 балл, если в одном из элементов допущена ошибка. Порядок записи цифр в ответе значения не
имеет. Как правило, задания будут иметь контекстный характер, т.е. часть данных, необходимых для выполнения задания будут приводиться в виде таблицы, схемы или графика.

В соответствии с этим заданием в кодификаторе добавился подраздел «Элементы астрофизики» раздела «Квантовая физика и элементы астрофизики», включающий следующие пункты:

·

Солнечная система: планеты земной
группы и планеты-гиганты, малые тела Солнечной системы.

·

Звёзды: разнообразие звездных
характеристик и их закономерности. Источники энергии звезд.

·

Современные представления о
происхождении и эволюции Солнца и звёзд. Наша галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной.

·

Современные взгляды на строение и
эволюцию Вселенной.

подробнее о структуре КИМ-2018 Вы можете узнать, посмотрев вебинар с участием М.Ю. Демидовой https://www.youtube.com/watch?v=JXeB6OzLokU либо в документе, приведенном ниже.

Изменений в заданиях ЕГЭ по физике на 2019
год нет.

Структура заданий ЕГЭ по физике-2019

Экзаменационная работа состоит из двух частей, включающих в себя 32 задания
.

Часть 1
содержит 27 заданий.

  • В заданиях 1–4, 8–10, 14, 15, 20, 25–27 ответом является целое число или конечная десятичная дробь.
  • Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность двух цифр.
  • Ответом к заданиям 19 и 22 являются два числа.

Часть 2
содержит 5 заданий. Ответ к заданиям 28–32 включает в себя подробное описание всего хода выполнения задания. Вторая часть заданий (с развёрнутым ответом) оцениваются экспертной комиссией на основе .

Темы ЕГЭ по физике, которые будут в экзаменационной работе

  1. Механика
    (кинематика, динамика, статика, законы сохранения в механике, механические колебания и волны).
  2. Молекулярная физика
    (молекулярно-кинетическая теория, термодинамика).
  3. Электродинамика и основы СТО
    (электрическое поле, постоянный ток, магнитное поле, электромагнитная индукция, электромагнитные колебания и волны, оптика, основы СТО).
  4. Квантовая физика и элементы астрофизики
    (корпускулярноволновой дуализм, физика атома, физика атомного ядра, элементы астрофизики).

Продолжительность ЕГЭ по физике

На выполнение всей экзаменационной работы отводится 235 минут
.

Примерное время на выполнение заданий различных частей работы составляет:

  1. для каждого задания с кратким ответом – 3–5 минут;
  2. для каждого задания с развернутым ответом – 15–20 минут.

Что можно брать на экзамен:

  • Используется непрограммируемый калькулятор (на каждого ученика) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка.
  • Перечень дополнительных устройств и , использование которых разрешено на ЕГЭ, утверждается Рособрнадзором.

Важно!!!
не стоит рассчитывать на шпаргалки, подсказки и использование технических средств (телефонов, планшетов) на экзамене. Видеонаблюдение на ЕГЭ-2019 усилят дополнительными камерами.

Баллы ЕГЭ по физике

  • 1 балл — за 1-4, 8, 9, 10, 13, 14, 15, 19, 20, 22, 23, 25, 26, 27 задания.
  • 2 балла — 5, 6, 7, 11, 12, 16, 17, 18, 21, 24.
  • З балла — 28, 29, 30, 31, 32.

Всего: 52 баллов
(максимальный первичный балл).

Что необходимо знать при подготовки заданий в ЕГЭ:

  • Знать/понимать смысл физических понятий, величин, законов, принципов, постулатов.
  • Уметь описывать и объяснять физические явления и свойства тел (включая космические объекты), результаты экспериментов… приводить примеры практического использования физических знаний
  • Отличать гипотезы от научной теории, делать выводы на основе эксперимента и т.д.
  • Уметь применять полученные знания при решении физических задач.
  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

С чего начать подготовку к ЕГЭ по физике:

  1. Изучать теорию, необходимую для каждого заданий.
  2. Тренироваться в тестовых заданиях по физике, разработанные на основе ЕГЭ. На нашем сайте задания и варианты по физике будут пополняться.
  3. Правильно распределяй время.

Желаем успеха!

ЕГЭ по физике

– экзамен, который не входит в перечень испытаний обязательных для сдачи всеми выпускниками. Физику выбирают потенциальные студенты инженерных специальностей. Причем, каждый ВУЗ устанавливает свою планку – в престижных учебных заведениях она может быть очень высокой. Это должен понимать выпускник, начиная подготовку к экзамену.
Цель экзамена

– проверка уровня знаний и умений, полученных в ходе школьного обучения, на соответствие нормам и стандартам, указанным в программе.

  • На экзамен отводится практически 4 часа – 235 минут, это время необходимо правильно распределить между заданиями, чтобы успешно справиться со всеми, не теряя ни одной минуты.
  • Разрешается брать с собой калькулятор, поскольку для выполнения заданий требуется множество сложных расчетов. Также можно взять линейку.
  • Работа состоит из трех частей, каждая имеет свои особенности, состоит из заданий разного уровня сложности.

Первая часть

экзаменационной работы состоит из обычных тестов с несколькими вариантами ответов, из которых требуется выбрать правильный. Цель первой части – проверка базовых знаний, умения применять теорию на практике на начальном уровне. При изучении новой темы в классе, подобные задания могли даваться для закрепления нового материала. Для успешного прохождения этого уровня, требуется выучить и повторить законы, теории, формулы, определения, чтобы иметь возможность воспроизвести их на экзамене. Также эта часть содержит задания, в которых требуется правильно установить соответствия. Формулируется задача и предлагается несколько вопросов к ней. К каждому вопросу необходимо подобрать правильный ответ из предложенных, и указать в бланке. Цель данной части испытания — проверка умения устанавливать связи между величинами, применять несколько формул и теорий, проводить вычисления на основе теоретических данных.
Вторая часть

делится на 2 блока. В первом блоке необходимо применять формулы, законы и теории для решения заданий и получения ответа. Экзаменуемому предлагаются варианты, из которых нужно выбрать правильный.
Во втором блоке – задачи, требуется предоставить детальное решение, полное объяснение каждого действия. Лица, проверяющие задание, должны также увидеть здесь формулы, законы, которые используются для решения – с них нужно начать детальный разбор задания.

Физика относится к сложным предметам, приблизительно каждый 15-1 сдает этот экзамен ежегодно, чтобы поступить в технический ВУЗ. Предполагается, что выпускник с такими целями не будет учить предмет «с нуля», чтобы подготовиться к ЕГЭ.
Чтобы удачно пройти испытание, необходимо:

  • Начинать повторение материала заранее, подходить к вопросу комплексно;
  • Активно применять теорию на практике – решать много заданий разного уровня сложности;
  • Заниматься самообразованием;
  • Проходить онлайн тестирование по вопросам за прошлые годы.

Эффективные помощники в подготовке – онлайн курсы, репетиторы. При помощи профессионального репетитора можно анализировать ошибки, быстро получать обратную связь. Онлайн курсы и ресурсы с заданиями помогут накопить опыт в решении различных заданий. «Решу ЕГЭ по физике» – возможность результативно тренироваться перед тестированием.

Добавлено: 3 ноября 2021 в 18:16

Решу физика ЕГЭ на высокий балл

Физика — сложный, но популярный предмет, который ежегодно сдает на едином государственном экзамене каждый пятый одиннадцатиклассник. В 2021 году эту учебную дисциплину выбрало почти 130 тыс. человек, для которых она открыла дорогу для поступления на множество технических направлений в российские вузы. Архитектура, строительство, авиакосмическая сфера, судостроение, наноматериалы и нанотехнологии, ИТ, машиностроение, металлургия, нефтегазовое дело, ландшафтный дизайн.

Этот список можно продолжать, но важно помнить — без подготовки на бюджетное и даже на платное обучение не поступить. Для ребят, которые поставили перед собой задачу «Решу физика ЕГЭ на высокий балл», мы собрали полезную информацию о правилах 2022 года.

Структура экзамена

В 2022 году экзамен уже традиционно будет состоять из двух частей:

  • первый блок из 23 мини-задач с кратким ответом, который дает 34 первичных балла или 63% от максимально возможного результата за весь экзамен;
  • вторая часть из 7 задач с развернутым ответом.

Решу физика ЕГЭ на высокий балл

Решу физика ЕГЭ на высокий балл

В 2022 году структура работы претерпела значительные изменения. Во-первых, общее количество заданий уменьшилось с 32 до 30, а максимальный первичный балл вырос с 53 до 54. Во-вторых, в структуре единого государственного экзамена произошли следующие изменения:

  • в часть 1 включена новая линия 1, в которой потребуется выбрать верные варианты из списка утверждений, относящихся к разным разделам физики;
  • появилась новая линия 2, в которой необходимо соотнести зависимости из разных разделов физики с соответствующими им графиками (причем графиков больше, чем утверждений);
  • из программы убрали задание 24, посвященное астрофизике;
  • усложнились линии 6, 12, 17 — теперь участникам не сообщают, сколько правильных вариантов в списке;
  • из части 2 убрали 2 задания с кратким ответом;
  • в части 3 добавилась одна задача;
  • усложнились требования к задаче по механике, а ее «стоимость» выросла до 4 баллов (теперь потребуется не только указать ход решения, но и охарактеризовать законы, используемые для поиска ответа).

Внимание! Изменения должны учесть те ребята, которые начинали готовиться к ЕГЭ в 10 классе. Просто включите новые формулировки и типы заданий в программу подготовки.

Решу физика ЕГЭ на высокий балл

Решу физика ЕГЭ на высокий балл

Содержание экзамена Решу физика ЕГЭ

Ребятам, которые готовятся к экзамену 2022 года, придется серьезно изучить школьный курс, особенно разделы по классической механике, термодинамике, молекулярно-кинетической теории, электродинамике и основам специальной теории относительности. Квантовая механика представлена 2 или 3 заданиями, причем одно из них во второй части, поэтому ее также придется повторить одиннадцатиклассникам, которые ставят перед собой цель: «Решу физика ЕГЭ на высокий балл».

Задания с кратким ответом различаются по специфике выполнения. В работе есть классические закрытые тесты, но в списке предлагаемых вариантов представлено несколько правильных ответов, поэтому придется учить. К примеру, в уже упомянутом задании 1 могут возникнуть дополнительные сложности, поскольку оно одновременное проверяет несколько разделов физики:

Внимание! Задания первой части не получится угадать, поскольку даже в тестах с множественным выбором представлено более одного правильного ответа.

Решу физика ЕГЭ на высокий балл

Решу физика ЕГЭ на высокий балл

Также участникам придется отвечать на закрытые тесты, в которых требуется подобрать соответствие между двумя группами элементов. Часто в этих группах присутствует разное количество вариантов, что усложняет задачу. Примером может служить новое задание 2, где нужно не только «вычислить» формулу или закономерность по ее словесному описанию, но и найти соответствующий график в перечне представленных изображений.

Еще 11 заданий представляют собой мини-задачи, которые нужно решить, записав правильный ответ в виде числа или двух чисел.

Внимание! На экзамен разрешается приносить калькулятор с опциями определения тригонометрических функций, но без функции программирования.

Решу физика ЕГЭ — как готовиться

Для качественной самостоятельной подготовки к ЕГЭ по физике придется приложить немалые усилия. Рекомендуем скачать с сайта ФИПИ комплект документации и изучить программу, представленную в кодификаторе. Она должна стать основой для «домашнего» учебного плана. Готовиться можно по школьным учебникам — этого будет достаточно для информационной «поддержки». Ребятам, нацеленным на высококонкурентные специальности, можно посоветовать актуальные пособия для поступающих в вузы. Главное, чтобы за академическим языком стояли понятные объяснения, а не текст ради текста и формул.

Советуем сразу же изучить демоверсию ФИПИ, чтобы понять, с какого рода задачами придется иметь дело. ЕГЭ по физике будет проходить в течение 235 минут, причем организаторы рекомендуют выделять по 2-5 минуты на каждое задание тестовой части и по 5-20 минут на задачу. Это немного, учитывая, сложность экзамена. Поэтому рекомендуем прорешать все варианты из банка заданий ФИПИ.

Внимание! В банке заданий ФИПИ представлены только условия. Решения придется вычислять самостоятельно или искать разборы в интернете!

Решу физика ЕГЭ на высокий балл

Решу физика ЕГЭ на высокий балл

При подготовке к заданиям с полным ответом советуем изучить критерии оценивания (представлены в демоверсии), которые помогут понять, что должно содержаться в работе. Также в этом документе приводится вероятный ход решения задач, поэтому для данного конкретного случая не придется искать решение. Учтите, что на реальном экзамене может попасться задание совершенно другого типа, поэтому нужно разобрать все возможные варианты, как это делают студенты на курсах TwoStu по физике.


Занимайтесь на курсах ЕГЭ и ОГЭ в паре TwoStu и получите максимум баллов на экзамене:

Владислав Барышников

Эксперт по подготовке к ЕГЭ, ОГЭ и ВПР

Задать вопрос

Закончил Московский физико-технический институт (Физтех) по специальности прикладная физика и математика. Магистр физико-математических наук. Преподавательский стаж более 13 лет. Соучредитель курсов ЕГЭ и ОГЭ в паре TwoStu.

Занимайтесь на курсах подготовки к ЕГЭ и ОГЭ (ГИА) в паре TwoStu и получите максимум баллов на ЕГЭ и ОГЭ!