55203 решу егэ математика

Егэ по математике профиль фипи опубликовал методические рекомендации обучающимся по организации индивидуальной подготовки к егэ 2022 по математике профильного уровня.
ЕГЭ по математике профиль

ФИПИ опубликовал Методические рекомендации обучающимся по организации индивидуальной подготовки к ЕГЭ 2022 по математике профильного уровня.

ЕГЭ по математике профиль

ФИПИ опубликовал Методические рекомендации обучающимся по организации индивидуальной подготовки к ЕГЭ 2022 по математике профильного уровня.

ЕГЭ по математике профиль

Методические рекомендации предназначены для обучающихся 11 классов, планирующих сдавать ЕГЭ 2022 г. по профильной математике.

ЕГЭ по математике профиль

Справочник для подготовки к ЕГЭ по математике и дополнительным испытаниям в МГУ. Это пособие должно быть у каждого абитуриента!

ЕГЭ по математике профиль

Прототипы задания №12 ЕГЭ по математике профильного уровня — уравнения. Практический материал для подготовки к экзамену в 11 классе.

ЕГЭ по математике профиль

Прототипы задания №8 ЕГЭ по математике профильного уровня — текстовые задачи. Практический материал для подготовки к экзамену в 11 классе.

ЕГЭ по математике профиль

Прототипы задания №7 ЕГЭ по математике профильного уровня — задачи с прикладным содержанием. Практический материал для подготовки к экзамену в 11 классе.

ЕГЭ по математике профиль

Прототипы задания №6 ЕГЭ по математике профильного уровня — производная и первообразная. Практический материал для подготовки к экзамену в 11 классе.

ЕГЭ по математике профиль

Прототипы задания №15 ЕГЭ по математике профильного уровня — финансовая математика. Практический материал для подготовки к экзамену в 11 классе.

ЕГЭ по математике профиль

Прототипы задания №14 ЕГЭ по математике профильного уровня — неравенства. Практический материал для подготовки к экзамену в 11 классе.

На ЕГЭ по математике профильного уровня в 2019 г. никаких изменений нет –программа экзамена, как и в прошлые годы, составлена из материалов основных математических дисциплин. Вбилетах будут присутствовать и математические, и геометрические, и алгебраические задачи.

Изменений в КИМ ЕГЭ 2019 по математике профильного уровня нет.

Особенности заданий ЕГЭ по математике-2019

  • Осуществляя подготовку к ЕГЭ по математике (профильной), обратите внимание на основные требования экзаменационной программы. Она призвана проверить знания углубленной программы: векторные и математические модели, функции и логарифмы, алгебраические уравнения и неравенства.
  • Отдельно потренируйтесь решать задания по .
  • Важно проявить нестандартность мышления.

Структура экзамена

Задания ЕГЭ профильной математики
разделены на два блока.

  1. Часть — краткие ответы
    , включает 8 задач, проверяющих базовую математическую подготовку и умение применять знания по математике в повседневности.
  2. Часть —
    краткие и развернутые ответы
    . Состоит из 11 задач, 4 из которых требуют короткого ответа, и 7 – развернутого с аргументацией выполненных действий.
  • Повышенной сложности
    — задания 9-17 второй части КИМа.
  • Высокого уровня сложности
    — задачи 18-19 –. Эта часть экзаменационных заданий проверяет не только уровень математических знаний, но и наличие или отсутствие творческого подхода к решению сухих «циферных» заданий, а такжеэффективность умения использовать знания и навыки в качестве профессионального инструмента.

Важно!
Поэтомуприподготовке к ЕГЭ теорию по математике всегда подкрепляйте решением практическихзадач.

Как будут распределять баллы

Задания части первой КИМов поматематике близки к тестам ЕГЭ базового уровня, поэтому высокого балла на них набрать невозможно.

Баллы за каждое задание по математике профильного уровня распределились так:

  • за правильные ответы на задачи №1-12 – по 1 баллу;
  • №13-15 – по 2;
  • №16-17 – по 3;
  • №18-19 – по 4.

Длительность экзамена и правила поведения на ЕГЭ

Для выполнения экзаменационной работы-2019
ученику отведено 3 часа 55 минут
(235 минут).

В это время ученик не должен:

  • вести себя шумно;
  • использовать гаджеты и другие технические средства;
  • списывать;
  • пытаться помогать другим, или просить помощи для себя.

За подобные действия экзаменующегося могут выдворить из аудитории.

На государственный экзамен по математике разрешено приносить
с собой только линейку, остальные материалывам выдадут непосредственно перед ЕГЭ. выдаются на месте.

Эффективная подготовка — это решение онлайн тестов по математике 2019. Выбирай и получай максимальный балл!

В данном разделе мы занимаемся подготовкой к ЕГЭ по математике как базового, профильного уровня — у нас представлены разборы задач, тесты, описание экзамена и полезные рекомендации. Пользуясь нашим ресурсом, вы как минимум разберетесь в решении задач и сможете успешно сдать ЕГЭ по математике в 2019 году. Начинаем!

ЕГЭ по математике является обязательным экзаменом любого школьника в 11 классе, поэтому информация, представленная в данном разделе актуальна для всех. Экзамен по математике делится на два вида — базовый и профильный. В данном разделе я приведен разбор каждого вида заданий с подробным объяснением для двух вариантов. Задания ЕГЭ строго тематические, поэтому для каждого номера можно дать точные рекомендации и привести теорию, необходимую именно для решения данного вида задания. Ниже вы найдете ссылки на задания, перейдя по которым можно изучить теорию и разобрать примеры. Примеры постоянно пополняются и актуализируются.

Структура базового уровня ЕГЭ по математике

Экзаменационная работа по математике базового уровня состоит из одной части

, включающей 20 заданий с кратким ответом. Все задания направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.

Ответом к каждому из заданий 1–20 является целое число
, конечная десятичная дробь

, или последовательность цифр

.

Задание с кратким ответом считается выполненным, если верный ответ записан в бланке ответов №1 в той форме, которая предусмотрена инструкцией по выполнению задания.

, – обязательный экзамен для сдачи выпускниками 11-х классов. По статистике он самый сложный.

Мы предлагаем ознакомиться с общей информацией об экзамене и сразу приступить к подготовке. Экзамен 2019 года не отличается от прошлого года – это касается и базового, и профильного варианта.

Базовый уровень ЕГЭ

Этот вариант подойдет для выпускников в двух случаях, если:

  1. не понадобится математика для поступления в вуз;
  2. не собираетесь продолжать обучение после окончания школы.

Если в выбранной вами специальности присутствует графа с предметом «математика», то базовый уровень не ваш вариант.

Оценивание базового экзамена

Формула перевода первичных баллов в тестовые каждый год обновляется и становится известной после проведения досрочного периода ЕГЭ. Уже вышло распоряжение Рособрнадзора, которое официально закрепило соответствие первичных и тестовых балов по всем предметам на 2019 год.

Согласно распоряжению, чтобы сдать базовый ЕГЭ по математике хотя бы на тройку, необходимо набрать 12 первичных баллов. Это равносильно правильному выполнению любых 12 заданий. Максимальный первичный балл – 20.

Структура базового экзамена

В 2019 году тест по математике базового уровня состоит из 20 заданий с кратким ответом, которым является целое число, или конечная десятичная дробь, или последовательность цифр. Ответ нужно либо посчитать, либо выбрать один из предлагаемых вариантов.

Профильный уровень ЕГЭ

Этот ЕГЭ в 2019 году не отличается от ЕГЭ прошлого года.

Именно профильный уровень выпускники должны сдавать для поступления в вузы, потому что в подавляющем большинстве специальностей математика указана как основной предмет для поступления.

Оценивание профильного теста

Здесь нет ничего специфичного: как обычно, вы набираете первичные баллы, которые потом переводятся в тестовые . И уже по 100-балльной системе можно определить отметку за экзамен.

Чтобы экзамен просто засчитали, достаточно набрать 6 первичных баллов. Для этого нужно решить хотя бы 6 заданий части 1. Максимальный первичный балл – 32.

Структура профильного теста

В 2019 году тест ЕГЭ по математике профильного уровня состоит из двух частей, включающих в себя 19 заданий.

  • Часть 1: 8 заданий (1–8) базового уровня сложности с кратким ответом.
  • Часть 2: 4 задания (9–12) повышенного уровня сложности с кратким ответом и 7 заданий (13–19) повышенного и высокого уровней сложности с развернутым ответом.

Подготовка к ЕГЭ

  • Пройдите
    тесты ЕГЭ онлайн бесплатно без регистрации и СМС. Представленные тесты по своей сложности и структуре идентичны реальным экзаменам, проводившимся в соответствующие годы.
  • Скачайте
    демонстрационные варианты ЕГЭ по математике, которые позволят лучше подготовиться к экзамену и легче его сдать. Все предложенные тесты разработаны и одобрены для подготовки к ЕГЭ Федеральным институтом педагогических измерений (ФИПИ). В этом же ФИПИ разрабатываются все официальные варианты ЕГЭ.
  • Ознакомьтесь
    с основными формулами для подготовки к экзамену, они помогут освежить память перед тем, как приступить к выполнению демонстрационных и тестовых вариантов.

Задания, которые вы увидите, скорее всего, не встретятся на экзамене, но будут задания, аналогичные демонстрационным, по той же тематике или просто с другими цифрами.

Общие цифры ЕГЭ

Год Миним. балл ЕГЭ Средний балл Кол-во сдававших Не сдали, % Кол-во100-балльников Длитель-
ность экзамена, мин.
2009 21
2010 21 43,35 864 708 6,1 160 240
2011 24 47,49 738 746 4,9 205 240
2012 24 44,6 831 068 7,5 56 240
2013 24 48,7 803 741 6,2 538 240
2014 20 46,4 240
2015 27 45,4 235
2016 27 235
2017 27 235

Многие абитуриенты обеспокоены тем, как самостоятельно получить знания, необходимые для успешной сдачи тестов перед поступлением. В 2017 году они часто обращаются к интернету для поиска решения. Решений есть множество, на по-настоящему стоящие стоит очень долго искать. К счастью, существуют известные и проверенные системы. Одна из них — Решу ЕГЭ Дмитрия Гущина.

Обучающая система Дмитрия Гущина под названием «Решу ЕГЭ» подразумевает под собой комплексную подготовку к предстоящему экзамену. Дмитрий Гущин создал постарался бесплатно дать необходимые знания для того, чтобы будущее поколение могло успешно сдать экзамены. Система рассчитана на самостоятельное изучение предметов. Решу ЕГЭ основана на равномерной подаче информации, которая последовательно, тема за темой, укладывается в мозгу школьника.

ЕГЭ−2017 по математике, базовый уровень

Дмитрий Гущин обязуется помочь с такими экзаменами как ОГЭ и ЕГЭ, используя очень распространённую методику. Она заключается в том, что все новые знания подаются и систематизируются по темам. Ученик может с лёгкостью выбрать то, что ему необходимо повторить для окончательного закрепления материала.

Задания доступны на базовом и профильном уровнях. Ярким примером таких задания является математика. Основной(базовый) уровень охватывает общешкольный объем знаний. В нём требуются те знания, которые получает за 11 лет каждый ученик. Профильный же уровень рассчитан на выпускников специализированных школ с уклоном на определённый предмет.

Интересной особенностью системы является её схожесть с реальным экзаменом. В случае проведения итоговой контрольной задания подаются в формате ЕГЭ. Учащийся также может узнать свой итоговый балл после прохождения тестирования. Это помогает мотивировать человека к достижению новых целей и к изучению нового материала. Осознание своих реальных шансов на экзамене помогает собраться с мыслями и понять, что конкретно нужно выучить.

Наиболее востребованные предметы в «Решу ЕГЭ» предоставлены наряду с другими. Русский язык Дмитрия Гущина включает в себя правила грамматики, пунктуации и синтаксиса, а также лексику. Химия содержит примеры решения специфических задач, специальные формулы. Также раздел химия включает в себя различные соединения и понятия о химических веществах. Раздел биология охватывает жизнедеятельность всех царств живых организмов. Там содержится важная теория, которая в итоге поможет вам успешно сдать экзамен.

Следующей особенностью является то, что ваш прогресс фиксируется, и вы можете отследить свои успехи. Такой подход поможет вам мотивировать себя даже в тех случаях, когда учиться больше не хочется. Свой собственный результат всегда заставляет делать больше.

В системе также есть критерии оценивания работ. Они сделают подготовку к экзамену спланированной и продуманной. Будущий студент всегда сможет прочитать их и понять на что будет обращать внимание экзаменатор. Это важно для того, чтобы уделить внимание отдельным важным аспектам работы. В целом ученик полностью осознает важность своего выбора и запоминает критерии оценивания.

Среднее общее образование

Линия УМК Г. К. Муравина. Алгебра и начала математического анализа (10-11) (углуб.)

Линия УМК Мерзляка. Алгебра и начала анализа (10-11) (У)

Математика

Разбираем задания и решаем примеры с учителем

Экзаменационная работа профильного уровня длится 3 часа 55 минут (235 минут).

Минимальный порог
— 27 баллов.

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий.

Определяющим признаком каждой части работы является форма заданий:

  • часть 1 содержит 8 заданий (задания 1-8) с кратким ответом в виде целого числа или конечной десятичной дроби;
  • часть 2 содержит 4 задания (задания 9-12) с кратким ответом в виде целого числа или конечной десятичной дроби и 7 заданий (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий).

Панова Светлана Анатольевна
, учитель математики высшей категории школы, стаж работы 20 лет:

«Для того чтобы получить школьный аттестат, выпускнику необходимо сдать два обязательных экзамена в форме ЕГЭ, один из которых математика. В соответствии с Концепцией развития математического образования в Российской Федерации ЕГЭ по математике разделен на два уровня: базовый и профильный. Сегодня мы рассмотрим варианты профильного уровня».

Задание № 1
— проверяет у участников ЕГЭ умение применять навыки, полученные в курсе 5 — 9 классов по элементарной математике, в практической деятельности. Участник должен владеть вычислительными навыками, уметь работать с рациональными числами, уметь округлять десятичные дроби, уметь переводить одни единицы измерения в другие.

Пример 1.
В квартире, где проживает Петр, установили прибор учета расхода холодной воды (счетчик). Первого мая счетчик показывал расход 172 куб. м воды, а первого июня — 177 куб. м. Какую сумму должен заплатить Петр за холодную воду за май, если цена 1 куб. м холодной воды составляет 34 руб 17 коп? Ответ дайте в рублях.

Решение:

1) Найдем количество потраченной воды за месяц:

177 — 172 = 5 (куб м)

2) Найдем сколько денег заплатят за потраченную воду:

34,17 · 5 = 170,85 (руб)

Ответ:
170,85.

Задание № 2
-является одним из простейших заданий экзамена. С ней успешно справляется большинство выпускников, что свидетельствует о владении определением понятия функции. Тип задания № 2 по кодификатору требований — это задание на использования приобретённых знаний и умений в практической деятельности и повседневной жизни. Задание № 2 состоит из описания с помощью функций различных реальных зависимостей между величинами и интерпретация их графиков. Задание № 2 проверяет умение извлекать информацию, представленную в таблицах, на диаграммах, графиках. Выпускникам нужно уметь определять значение функции по значению аргумента при различных способах задания функции и описывать поведение и свойства функции по её графику. Также необходимо уметь находить по графику функции наибольшее или наименьшее значение и строить графики изученных функций. Допускаемые ошибки носят случайный характер в чтении условия задачи, чтении диаграммы.

#ADVERTISING_INSERT#

Пример 2.
На рисунке показано изменение биржевой стоимости одной акции добывающей компании в первой половине апреля 2017 года. 7 апреля бизнесмен приобрёл 1000 акций этой компании. 10 апреля он продал три четверти купленных акций, а 13 апреля продал все оставшиеся. Сколько потерял бизнесмен в результате этих операций?

Решение:

2) 1000 · 3/4 = 750 (акций) — составляют 3/4 от всех купленных акций.

6) 247500 + 77500 = 325000 (руб) — бизнесмен получил после продажи 1000 акций.

7) 340000 – 325000 = 15000 (руб) — потерял бизнесмен в результате всех операций.

Ответ:
15000.

Задание № 3
— является заданием базового уровня первой части, проверяет умения выполнять действия с геометрическими фигурами по содержанию курса «Планиметрия». В задании 3 проверяется умение вычислять площадь фигуры на клетчатой бумаге, умение вычислять градусные меры углов, вычислять периметры и т.п.

Пример 3.
Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Решение:
Для вычисления площади данной фигуры можно воспользоваться формулой Пика:

Для вычисления площади данного прямоугольника воспользуемся формулой Пика:

где В = 10, Г = 6, поэтому
Ответ:
20.


Читайте также: ЕГЭ по физике: решение задач о колебаниях



Задание № 4
— задача курса «Теория вероятностей и статистика». Проверяется умение вычислять вероятность события в простейшей ситуации.

Пример 4.
На окружности отмечены 5 красных и 1 синяя точка. Определите, каких многоугольников больше: тех, у которых все вершины красные, или тех, у которых одна из вершин синяя. В ответе укажите, на сколько одних больше, чем других.

Решение:
1) Воспользуемся формулой числа сочетаний из n
элементов по k
:

у которых все вершины красные.

3) Один пятиугольник, у которого все вершины красные.

4) 10 + 5 + 1 = 16 многоугольников, у которых все вершины красные.

у которых вершины красные или с одной синей вершиной.

у которых вершины красные или с одной синей вершиной.

8) Один шестиуголник, у которого вершины красные с одной синей вершиной.

9) 20 + 15 + 6 + 1 = 42 многоуголника, у которых все вершины красные или с одной синей вершиной.

10) 42 – 16 = 26 многоугольников, в которых используется синяя точка.

11) 26 – 16 = 10 многоугольников – на сколько многоугольников, у которых одна из вершин — синяя точка, больше, чем многоугольников, у которых все вершины только красные.

Ответ:
10.

Задание № 5
— базового уровня первой части проверяет умения решать простейшие уравнения (иррациональные, показательные, тригонометрические, логарифмические).

Пример 5.
Решите уравнение 2 3 + x
= 0,4 · 5 3 + x
.

Решение.
Разделим обе части данного уравнения на 5 3 + х
≠ 0, получим

2 3 + x
= 0,4 или 2 3 + х
= 2 ,
5 3 + х
5 5

откуда следует, что 3 + x
= 1, x
= –2.

Ответ:
–2.

Задание № 6
по планиметрии на нахождение геометрических величин (длин, углов, площадей), моделирование реальных ситуаций на языке геометрии. Исследование построенных моделей с использованием геометрических понятий и теорем. Источником трудностей является, как правило, незнание или неверное применение необходимых теорем планиметрии.

Площадь треугольника ABC
равна 129. DE
– средняя линия, параллельная стороне AB
. Найдите площадь трапеции ABED
.

Решение.
Треугольник CDE
подобен треугольнику CAB
по двум углам, так как угол при вершине C
общий, угол СDE
равен углу CAB
как соответственные углы при DE
|| AB
секущей AC
. Так как DE
– средняя линия треугольника по условию, то по свойству средней линии | DE
= (1/2)AB
. Значит, коэффициент подобия равен 0,5. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому

Следовательно, S ABED
= S
ΔABC
S
ΔCDE
= 129 – 32,25 = 96,75.

Задание № 7
— проверяет применение производной к исследованию функции. Для успешного выполнения необходимо содержательное, не формальное владение понятием производной.

Пример 7.
К графику функции y
= f
(x
) в точке с абсциссой x
0 проведена касательная, которая перпендикулярна прямой, проходящей через точки (4; 3) и (3; –1) этого графика. Найдите f
′(x
0).

Решение.
1) Воспользуемся уравнением прямой, проходящей через две заданные точки и найдём уравнение прямой, проходящей через точки (4; 3) и (3; –1).

(y
y
1)(x
2 – x
1) = (x
x
1)(y
2 – y
1)

(y
– 3)(3 – 4) = (x
– 4)(–1 – 3)

(y
– 3)(–1) = (x
– 4)(–4)

y
+ 3 = –4x
+ 16| · (–1)

y
– 3 = 4x
– 16

y
= 4x
– 13, где k
1 = 4.

2) Найдём угловой коэффициент касательной k
2 , которая перпендикулярна прямой y
= 4x
– 13, где k
1 = 4, по формуле:

3) Угловой коэффициент касательной – производная функции в точке касания. Значит, f
′(x
0) = k
2 = –0,25.

Ответ:
–0,25.

Задание № 8
— проверяет у участников экзамена знания по элементарной стереометрии, умение применять формулы нахождения площадей поверхностей и объемов фигур, двугранных углов, сравнивать объемы подобных фигур, уметь выполнять действия с геометрическими фигурами, координатами и векторами и т.п.

Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.

Решение.
1) V
куба = a
3 (где а
– длина ребра куба), поэтому

а
3 = 216

а
= 3 √216

2) Так как сфера вписана в куб, значит, длина диаметра сферы равна длине ребра куба, поэтому d
= a
, d
= 6, d
= 2R
, R
= 6: 2 = 3.

Задание № 9
— требует от выпускника навыков преобразования и упрощения алгебраических выражений. Задание № 9 повышенного уровня сложности с кратким ответом. Задания из раздела «Вычисления и преобразования» в ЕГЭ подразделяются на несколько видов:

    преобразования числовых рациональных выражений;

    преобразования алгебраических выражений и дробей;

    преобразования числовых/буквенных иррациональных выражений;

    действия со степенями;

    преобразование логарифмических выражений;

  1. преобразования числовых/буквенных тригонометрических выражений.

Пример 9.
Вычислите tgα, если известно, что cos2α = 0,6 и

Решение.
1) Воспользуемся формулой двойного аргумента: cos2α = 2 cos 2 α – 1 и найдём

tg 2 α = 1 – 1 = 1 – 1 = 10 – 1 = 5 – 1 = 1 1 – 1 = 1 = 0,25.
cos 2 α 0,8 8 4 4 4

Значит, tg 2 α = ± 0,5.

3) По условию

значит, α – угол II четверти и tgα

Ответ:
–0,5.

#ADVERTISING_INSERT#
Задание № 10
— проверяет у учащихся умение использовать приобретенные раннее знания и умения в практической деятельности и повседневной жизни. Можно сказать, что это задачи по физике, а не по математике, но все необходимые формулы и величины даны в условии. Задачи сводятся к решению линейного или квадратного уравнения, либо линейного или квадратного неравенства. Поэтому необходимо уметь решать такие уравнения и неравенства, и определять ответ. Ответ должен получиться в виде целого числа или конечной десятичной дроби.

Два тела массой m
= 2 кг каждое, движутся с одинаковой скоростью v
= 10 м/с под углом 2α
друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении определяется выражением Q
= mv
2 sin 2 α. Под каким наименьшим углом 2α
(в градусах) должны двигаться тела, чтобы в результате соударения выделилось не менее 50 джоулей?
Решение.
Для решения задачи нам необходимо решить неравенство Q ≥ 50, на интервале 2α
∈ (0°; 180°).

mv
2 sin 2 α ≥ 50

2· 10 2 sin 2 α ≥ 50

200 · sin 2 α ≥ 50

Так как α
∈ (0°; 90°), то будем решать только

Изобразим решение неравенства графически:

Так как по условию α
∈ (0°; 90°), значит 30° ≤ α

Задание № 11
— является типовым, но оказывается непростым для учащихся. Главным источником затруднений является построение математической модели (составление уравнения). Задание № 11 проверяет умение решать текстовые задачи.

Пример 11.
На весенних каникулах 11-классник Вася должен был решить 560 тренировочных задач для подготовки к ЕГЭ. 18 марта в последний учебный день Вася решил 5 задач. Далее ежедневно он решал на одно и то же количество задач больше по сравнению с предыдущим днём. Определите, сколько задач Вася решил 2 апреля в последний день каникул.

Решение:
Обозначим a
1 = 5 – количество задач, которые Вася решил 18 марта, d
– ежедневное количество задач, решаемых Васей, n
= 16 – количество дней с 18 марта по 2 апреля включительно, S
16 = 560 – общее количество задач, a
16 – количество задач, которые Вася решил 2 апреля. Зная, что ежедневно Вася решал на одно и то же количество задач больше по сравнению с предыдущим днём, то можно использовать формулы нахождения суммы арифметической прогрессии:

560 = (5 + a
16) · 8,

5 + a
16 = 560: 8,

5 + a
16 = 70,

a
16 = 70 – 5

a
16 = 65.

Ответ:
65.

Задание № 12
— проверяют у учащихся умение выполнять действия с функциями, уметь применять производную к исследованию функции.

Найти точку максимума функции y
= 10ln(x
+ 9) – 10x
+ 1.

Решение:
1) Найдем область определения функции: x
+ 9 > 0, x
> –9, то есть x ∈ (–9; ∞).

2) Найдем производную функции:

4) Найденная точка принадлежит промежутку (–9; ∞). Определим знаки производной функции и изобразим на рисунке поведение функции:

Искомая точка максимума x
= –8.

Скачать бесплатно рабочую программу по математике к линии УМК Г.К. Муравина, К.С. Муравина, О.В. Муравиной 10-11

Скачать бесплатно методические пособия по алгебре


Задание № 13
-повышенного уровня сложности с развернутым ответом, проверяющее умение решать уравнения, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

а) Решите уравнение 2log 3 2 (2cosx
) – 5log 3 (2cosx
) + 2 = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку .

Решение:
а) Пусть log 3 (2cosx
) = t
, тогда 2t
2 – 5t
+ 2 = 0,

log 3 (2cosx
) =
2 2cosx
= 9
cosx
=
4,5 ⇔ т.к. |cosx
| ≤ 1,
log 3 (2cosx
) =
1 2cosx
= √3
cosx
=
√3
2 2
x
=
π + 2πk
6
x
= –
π + 2πk
, k
Z
6

б) Найдём корни, лежащие на отрезке .

Из рисунка видно, что заданному отрезку принадлежат корни

Ответ:
а)
π + 2πk
; –
π + 2πk
, k
Z
; б)
11π ; 13π .
6 6 6 6


Задание № 14
-повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Расстояние между хордами равно 2√197.

а) Докажите, что центры оснований цилиндра лежат по одну сторону от этой плоскости.

б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.

Решение:
а) Хорда длиной 12 находится на расстоянии = 8 от центра окружности основания, а хорда длиной 16, аналогично, – на расстоянии 6. Поэтому расстояние между их проекциями на плоскость, параллельную основаниям цилиндров, составляет либо 8 + 6 = 14, либо 8 − 6 = 2.

Тогда расстояние между хордами составляет либо

= = √980 = = 2√245

= = √788 = = 2√197.

По условию реализовался второй случай, в нем проекции хорд лежат по одну сторону от оси цилиндра. Значит, ось не пересекает данную плоскость в пределах цилиндра, то есть основания лежат по одну сторону от нее. Что требовалось доказать.

б) Обозначим центры оснований за О 1 и О 2 . Проведем из центра основания с хордой длины 12 серединный перпендикуляр к этой хорде (он имеет длину 8, как уже отмечалось) и из центра другого основания — к другой хорде. Они лежат в одной плоскости β, перпендикулярной этим хордам. Назовем середину меньшей хорды B, большей A и проекцию A на второе основание — H (H ∈ β). Тогда AB,AH ∈ β и значит, AB,AH перпендикулярны хорде, то есть прямой пересечения основания с данной плоскостью.

Значит, искомый угол равен

∠ABH = arctg AH = arctg 28 = arctg14.
BH 8 – 6

Задание № 15
— повышенного уровня сложности с развернутым ответом, проверяет умение решать неравенства, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

Пример 15.
Решите неравенство |x
2 – 3x
| · log 2 (x
+ 1) ≤ 3x
x
2 .

Решение:
Областью определения данного неравенства является интервал (–1; +∞). Рассмотри отдельно три случая:

1) Пусть x
2 – 3x
= 0, т.е. х
= 0 или х
= 3. В этом случае данное неравенство превращается в верное, следовательно, эти значения входят в решение.

2) Пусть теперь x
2 – 3x
> 0, т.е. x
∈ (–1; 0) ∪ (3; +∞). При этом данное неравенство можно переписать в виде (x
2 – 3x
) · log 2 (x
+ 1) ≤ 3x
x
2 и разделить на положительное выражение x
2 – 3x
. Получим log 2 (x
+ 1) ≤ –1, x
+ 1 ≤ 2 –1 , x
≤ 0,5 –1 или x
≤ –0,5. Учитывая область определения, имеем x
∈ (–1; –0,5].

3) Наконец, рассмотрим x
2 – 3x
x
∈ (0; 3). При этом исходное неравенство перепишется в виде (3x
x
2) · log 2 (x
+ 1) ≤ 3x
x
2 . После деления на положительное выражение 3x
x
2 , получим log 2 (x
+ 1) ≤ 1, x
+ 1 ≤ 2, x
≤ 1. Учитывая область, имеем x
∈ (0; 1].

Объединяя полученные решения, получаем x
∈ (–1; –0.5] ∪ ∪ {3}.

Ответ:
(–1; –0.5] ∪ ∪ {3}.

Задание № 16
— повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами, координатами и векторами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E – на отрезке AB. а) Докажите, что FH = 2DH. б) Найдите площадь прямоугольника DEFH, если AB = 4.

Решение:
а)

1) ΔBEF – прямоугольный, EF⊥BC, ∠B = (180° – 120°) : 2 = 30°, тогда EF = BE по свойству катета, лежащего против угла 30°.

2) Пусть EF = DH = x
, тогда BE = 2x
, BF = x
√3 по теореме Пифагора.

3) Так как ΔABC равнобедренный, значит, ∠B = ∠C = 30˚.

BD – биссектриса ∠B, значит ∠ABD = ∠DBC = 15˚.

4) Рассмотрим ΔDBH – прямоугольный, т.к. DH⊥BC.

2x
= 4 – 2x
2x
(√3 + 1)
4

√3 – 1
= 2 – x

x
= 3 – √3

EF = 3 – √3

2) S
DEFH = ED · EF = (3 – √3
) · 2(3 – √3
)

S
DEFH = 24 – 12√3.

Ответ:
24 – 12√3.

Задание № 17
— задание с развернутым ответом, это задание проверяет применение знаний и умений в практической деятельности и повседневной жизни, умение строить и исследовать математические модели. Это задание — текстовая задача с экономическим содержанием.

Пример 17.
Вклад в размере 20 млн рублей планируется открыть на четыре года. В конце каждого года банк увеличивает вклад на 10% по сравнению с его размером в начале года. Кроме того, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на х
млн. рублей, где х
целое
число. Найдите наибольшее значение х
, при котором банк за четыре года начислит на вклад меньше 17 млн рублей.

Решение:
В конце первого года вклад составит 20 + 20 · 0,1 = 22 млн рублей, а в конце второго – 22 + 22 · 0,1 = 24,2 млн рублей. В начале третьего года вклад (в млн рублей) составит (24,2 + х
), а в конце — (24,2 + х)
+ (24,2 + х)
· 0,1 = (26,62 + 1,1х
). В начале четвёртого года вклад составит (26,62 + 2,1х)
, а в конце — (26,62 + 2,1х
) + (26,62 + 2,1х
) · 0,1 = (29,282 + 2,31х
). По условию, нужно найти наибольшее целое х, для которого выполнено неравенство

(29,282 + 2,31x
) – 20 – 2x

29,282 + 2,31x
– 20 – 2x

0,31x

0,31x

Наибольшее целое решение этого неравенства — число 24.

Ответ:
24.

Задание № 18
— задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности — это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 18 необходим, кроме прочных математических знаний, также высокий уровень математической культуры.

При каких a
система неравенств

x
2 + y
2 ≤ 2ay
a
2 + 1
y
+ a
≤ |x
| – a

имеет ровно два решения?

Решение:
Данную систему можно переписать в виде

x
2 + (y
a
) 2 ≤ 1
y
≤ |x
| – a

Если нарисовать на плоскости множество решений первого неравенства, получится внутренность круга (с границей) радиуса 1 с центром в точке (0, а
). Множество решений второго неравенства – часть плоскости, лежащая под графиком функции y
= |
x
| –
a
,
причём последний есть график функции
y
= |
x
|
, сдвинутый вниз на а
. Решение данной системы есть пересечение множеств решений каждого из неравенств.

Следовательно, два решения данная система будет иметь лишь в случае, изображённом на рис. 1.

Точки касания круга с прямыми и будут двумя решениями системы. Каждая из прямых наклонена к осям под углом 45°. Значит, треугольник PQR
– прямоугольный равнобедренный. Точка Q
имеет координаты (0, а
), а точка R
– координаты (0, –а
). Кроме того, отрезки PR
и PQ
равны радиусу окружности, равному 1. Значит,




Задание № 19
— задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности — это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 19 необходимо уметь осуществлять поиск решения, выбирая различные подходы из числа известных, модифицируя изученные методы.

Пусть Sn
сумма п
членов арифметической прогрессии (а п
). Известно, что S n
+ 1 = 2n
2 – 21n
– 23.

а) Укажите формулу п
-го члена этой прогрессии.

б) Найдите наименьшую по модулю сумму S n
.

в) Найдите наименьшее п
, при котором S n
будет квадратом целого числа.

Решение
: а) Очевидно, что a n
= S n
S n
– 1 . Используя данную формулу, получаем:

S n
= S
(n
– 1) + 1 = 2(n
– 1) 2 – 21(n
– 1) – 23 = 2n
2 – 25n
,

S n
– 1 = S
(n
– 2) + 1 = 2(n
– 1) 2 – 21(n
– 2) – 23 = 2n
2 – 25n
+ 27

значит, a n
= 2n
2 – 25n
– (2n
2 – 29n
+ 27) = 4n
– 27.

Б) Так как S n
= 2n
2 – 25n
, то рассмотрим функцию S
(x
) = |
2x
2 – 25x|
. Ее график можно увидеть на рисунке.

Очевидно, что наименьшее значение достигается в целочисленных точках, расположенных наиболее близко к нулям функции. Очевидно, что это точки х
= 1, х
= 12 и х
= 13. Поскольку, S
(1) = |S
1 | = |2 – 25| = 23, S
(12) = |S
12 | = |2 · 144 – 25 · 12| = 12, S
(13) = |S
13 | = |2 · 169 – 25 · 13| = 13, то наименьшее значение равно 12.

в) Из предыдущего пункта вытекает, что Sn
положительно, начиная с n
= 13. Так как S n
= 2n
2 – 25n
= n
(2n
– 25), то очевидный случай, когда данное выражение является полным квадратом, реализуется при n
= 2n
– 25, то есть при п
= 25.

Осталось проверить значения с 13 до 25:

S
13 = 13 · 1, S
14 = 14 · 3, S
15 = 15 · 5, S
16 = 16 · 7, S
17 = 17 · 9, S
18 = 18 · 11, S
19 = 19 · 13, S
20 = 20 · 13, S
21 = 21 · 17, S
22 = 22 · 19, S
23 = 23 · 21, S
24 = 24 · 23.

Получается, что при меньших значениях п
полный квадрат не достигается.

Ответ:
а) a n
= 4n
– 27; б) 12; в) 25.

________________

*С мая 2017 года объединенная издательская группа «ДРОФА-ВЕНТАНА» входит в корпорацию «Российский учебник». В корпорацию также вошли издательство «Астрель» и цифровая образовательная платформа «LECTA». Генеральным директором назначен Александр Брычкин, выпускник Финансовой академии при Правительстве РФ, кандидат экономических наук, руководитель инновационных проектов издательства «ДРОФА» в сфере цифрового образования (электронные формы учебников, «Российская электронная школа», цифровая образовательная платформа LECTA). До прихода в издательство «ДРОФА» занимал позицию вице-президента по стратегическому развитию и инвестициям издательского холдинга «ЭКСМО-АСТ». Сегодня издательская корпорация «Российский учебник» обладает самым крупным портфелем учебников, включенных в Федеральный перечень — 485 наименований (примерно 40%, без учета учебников для коррекционной школы). Издательствам корпорации принадлежат наиболее востребованные российскими школами комплекты учебников по физике, черчению, биологии, химии, технологии, географии, астрономии — областям знаний, которые нужны для развития производственного потенциала страны. В портфель корпорации входят учебники и учебные пособия для начальной школы, удостоенные Премии Президента в области образования. Это учебники и пособия по предметным областям, которые необходимы для развития научно-технического и производственного потенциала России.

Узнай свой уровень знаний по математике всего за 8 минут. Все, что нужно, — это честность!

Знакомься. Наш супер-тест для тех, кто перешел в 11-й класс: Анкета

А также для родителей, который собираются самостоятельно подготовить «ребенка» к ЕГЭ.

И даже для учителей.

Всего 8 минут и никакого решения задач.

Ты просто отвечаешь: «Да» или «Нет» Анкета

Читай вопросы внимательно.

Обрати внимание, что здесь нет вариантов «получается иногда» или «однажды видел, как это делать». Если решаешь «пятьдесят на пятьдесят», лучше честно указать: «не решаю». Зачем обманывать себя?

Заодно узнаешь, какие вообще темы есть на ЕГЭ по математике в каждой из 19 задач Профильного уровня.

В конце нажми кнопку «Посчитать».

Как ты догадался, результат – твои тестовые баллы на ЕГЭ.

Тест разработан Анной Малковой и командой ЕГЭ-Студии. Проверен и откалиброван. Его проходили десятки наших учеников, и результаты с высокой точностью совпадали с теми, которые они получали на Пробных ЕГЭ.

Мы также подготовили для тебя варианты Профильного ЕГЭ по математике с решениями и ответами.

  • ЕГЭ, профильный уровень. Тренировочный вариант 1
  • ЕГЭ, профильный уровень. Тренировочный вариант 2
  • ЕГЭ, профильный уровень. Тренировочный вариант 3
  • ЕГЭ, профильный уровень. Тренировочный вариант 4
  • ЕГЭ, профильный уровень. Тренировочный вариант 5
  • ЕГЭ-2018, профильный уровень. Разбор задач 13-19
  • Нерешаемые задачи ЕГЭ по математике
  • Стрим 20 августа 2020 года. Лучшие задачи ЕГЭ-2020

Рекомендации по решению вариантов:

1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по одной и старайтесь довести до ответа.

2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Например, на нашем Онлайн-курс подготовки к ЕГЭ

3. Как оценить свой уровень?

Вам поможет наша Таблица перевода первичных баллов ЕГЭ в тестовые

Задания 1 части (№1 – 12) оцениваются в 1 первичный балл каждое.

Задания 13, 14, 15 – в 2 первичных балла каждое,

Задания 16 и 17 – 3 балла,

Задания 18 и 19 – 4 балла!

Если вы набрали не менее 60 тестовых баллов за весь вариант – у вас высокие шансы сдать ЕГЭ на 90+. Если заниматься, конечно.

Если набрали около 40 баллов… что же, это типичная картина на старте 11-го класса. И даже для того, чтобы получить 70+, надо будет хорошо поработать. И тем более для 80+ и 90+. И не расстраивайтесь – у наших учеников это хорошо получается.

Если ниже 35 баллов – значит, увы, уже отстаете.

Потому что многие задания ЕГЭ – например, задачи 1, 2, 3, 4, 6, 8, 11 и даже 16… — легко может решить и учащийся 9-10 класса.

4. Обязательно разберите правильные решения. Удачи!