563891 решу егэ математика

В данном разделе мы занимаемся подготовкой к егэ по математике как базового, профильного уровня - у нас представлены разборы задач,

В данном разделе мы занимаемся подготовкой к ЕГЭ по математике как базового, профильного уровня — у нас представлены разборы задач, тесты, описание экзамена и полезные рекомендации. Пользуясь нашим ресурсом, вы как минимум разберетесь в решении задач и сможете успешно сдать ЕГЭ по математике в 2019 году. Начинаем!

ЕГЭ по математике является обязательным экзаменом любого школьника в 11 классе, поэтому информация, представленная в данном разделе актуальна для всех. Экзамен по математике делится на два вида — базовый и профильный. В данном разделе я приведен разбор каждого вида заданий с подробным объяснением для двух вариантов. Задания ЕГЭ строго тематические, поэтому для каждого номера можно дать точные рекомендации и привести теорию, необходимую именно для решения данного вида задания. Ниже вы найдете ссылки на задания, перейдя по которым можно изучить теорию и разобрать примеры. Примеры постоянно пополняются и актуализируются.

Структура базового уровня ЕГЭ по математике

Экзаменационная работа по математике базового уровня состоит из одной части

, включающей 20 заданий с кратким ответом. Все задания направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.

Ответом к каждому из заданий 1–20 является целое число
, конечная десятичная дробь

, или последовательность цифр

.

Задание с кратким ответом считается выполненным, если верный ответ записан в бланке ответов №1 в той форме, которая предусмотрена инструкцией по выполнению задания.

На ЕГЭ по математике профильного уровня в 2019 г. никаких изменений нет –программа экзамена, как и в прошлые годы, составлена из материалов основных математических дисциплин. Вбилетах будут присутствовать и математические, и геометрические, и алгебраические задачи.

Изменений в КИМ ЕГЭ 2019 по математике профильного уровня нет.

Особенности заданий ЕГЭ по математике-2019

  • Осуществляя подготовку к ЕГЭ по математике (профильной), обратите внимание на основные требования экзаменационной программы. Она призвана проверить знания углубленной программы: векторные и математические модели, функции и логарифмы, алгебраические уравнения и неравенства.
  • Отдельно потренируйтесь решать задания по .
  • Важно проявить нестандартность мышления.

Структура экзамена

Задания ЕГЭ профильной математики
разделены на два блока.

  1. Часть — краткие ответы
    , включает 8 задач, проверяющих базовую математическую подготовку и умение применять знания по математике в повседневности.
  2. Часть —
    краткие и развернутые ответы
    . Состоит из 11 задач, 4 из которых требуют короткого ответа, и 7 – развернутого с аргументацией выполненных действий.
  • Повышенной сложности
    — задания 9-17 второй части КИМа.
  • Высокого уровня сложности
    — задачи 18-19 –. Эта часть экзаменационных заданий проверяет не только уровень математических знаний, но и наличие или отсутствие творческого подхода к решению сухих «циферных» заданий, а такжеэффективность умения использовать знания и навыки в качестве профессионального инструмента.

Важно!
Поэтомуприподготовке к ЕГЭ теорию по математике всегда подкрепляйте решением практическихзадач.

Как будут распределять баллы

Задания части первой КИМов поматематике близки к тестам ЕГЭ базового уровня, поэтому высокого балла на них набрать невозможно.

Баллы за каждое задание по математике профильного уровня распределились так:

  • за правильные ответы на задачи №1-12 – по 1 баллу;
  • №13-15 – по 2;
  • №16-17 – по 3;
  • №18-19 – по 4.

Длительность экзамена и правила поведения на ЕГЭ

Для выполнения экзаменационной работы-2019
ученику отведено 3 часа 55 минут
(235 минут).

В это время ученик не должен:

  • вести себя шумно;
  • использовать гаджеты и другие технические средства;
  • списывать;
  • пытаться помогать другим, или просить помощи для себя.

За подобные действия экзаменующегося могут выдворить из аудитории.

На государственный экзамен по математике разрешено приносить
с собой только линейку, остальные материалывам выдадут непосредственно перед ЕГЭ. выдаются на месте.

Эффективная подготовка — это решение онлайн тестов по математике 2019. Выбирай и получай максимальный балл!

Оценивание

двух частей
, включающих в себя 19 заданий
. Часть 1
Часть 2

3 часа 55 минут
(235 минут).

Ответы

Но можно сделать циркуль
Калькуляторы
на экзамене не используются
.

паспорт
), пропуск
и капиллярную или ! Разрешают брать
с собой воду
(в прозрачной бутылке) и еду

Экзаменационная работа состоит из двух частей
, включающих в себя 19 заданий
. Часть 1
содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2
cодержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий высокого уровня сложности с развёрнутым ответом.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут
(235 минут).

Ответы
к заданиям 1–12 записываются в виде целого числа или конечной десятичной дроби
. Числа запишите в поля ответов в тексте работы, а затем перенесите в бланк ответов № 1, выданный на экзамене!

При выполнении работы Вы можете воспользоваться , выдаваемыми вместе с работой.
Разрешается использовать только линейку
, но можно сделать циркуль
своими руками. Запрещается использовать инструменты с нанесёнными на них справочными материалами. Калькуляторы
на экзамене не используются
.

На экзамене при себе надо иметь документ удостоверяющий личность (паспорт
), пропуск
и капиллярную или гелевую ручку с черными чернилами
! Разрешают брать
с собой воду
(в прозрачной бутылке) и еду
(фрукты, шоколадку, булочки, бутерброды), но могут попросить оставить в коридоре.

Среднее общее образование

Линия УМК Г. К. Муравина. Алгебра и начала математического анализа (10-11) (углуб.)

Линия УМК Мерзляка. Алгебра и начала анализа (10-11) (У)

Математика

Разбираем задания и решаем примеры с учителем

Экзаменационная работа профильного уровня длится 3 часа 55 минут (235 минут).

Минимальный порог
— 27 баллов.

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий.

Определяющим признаком каждой части работы является форма заданий:

  • часть 1 содержит 8 заданий (задания 1-8) с кратким ответом в виде целого числа или конечной десятичной дроби;
  • часть 2 содержит 4 задания (задания 9-12) с кратким ответом в виде целого числа или конечной десятичной дроби и 7 заданий (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий).

Панова Светлана Анатольевна
, учитель математики высшей категории школы, стаж работы 20 лет:

«Для того чтобы получить школьный аттестат, выпускнику необходимо сдать два обязательных экзамена в форме ЕГЭ, один из которых математика. В соответствии с Концепцией развития математического образования в Российской Федерации ЕГЭ по математике разделен на два уровня: базовый и профильный. Сегодня мы рассмотрим варианты профильного уровня».

Задание № 1
— проверяет у участников ЕГЭ умение применять навыки, полученные в курсе 5 — 9 классов по элементарной математике, в практической деятельности. Участник должен владеть вычислительными навыками, уметь работать с рациональными числами, уметь округлять десятичные дроби, уметь переводить одни единицы измерения в другие.

Пример 1.
В квартире, где проживает Петр, установили прибор учета расхода холодной воды (счетчик). Первого мая счетчик показывал расход 172 куб. м воды, а первого июня — 177 куб. м. Какую сумму должен заплатить Петр за холодную воду за май, если цена 1 куб. м холодной воды составляет 34 руб 17 коп? Ответ дайте в рублях.

Решение:

1) Найдем количество потраченной воды за месяц:

177 — 172 = 5 (куб м)

2) Найдем сколько денег заплатят за потраченную воду:

34,17 · 5 = 170,85 (руб)

Ответ:
170,85.

Задание № 2
-является одним из простейших заданий экзамена. С ней успешно справляется большинство выпускников, что свидетельствует о владении определением понятия функции. Тип задания № 2 по кодификатору требований — это задание на использования приобретённых знаний и умений в практической деятельности и повседневной жизни. Задание № 2 состоит из описания с помощью функций различных реальных зависимостей между величинами и интерпретация их графиков. Задание № 2 проверяет умение извлекать информацию, представленную в таблицах, на диаграммах, графиках. Выпускникам нужно уметь определять значение функции по значению аргумента при различных способах задания функции и описывать поведение и свойства функции по её графику. Также необходимо уметь находить по графику функции наибольшее или наименьшее значение и строить графики изученных функций. Допускаемые ошибки носят случайный характер в чтении условия задачи, чтении диаграммы.

#ADVERTISING_INSERT#

Пример 2.
На рисунке показано изменение биржевой стоимости одной акции добывающей компании в первой половине апреля 2017 года. 7 апреля бизнесмен приобрёл 1000 акций этой компании. 10 апреля он продал три четверти купленных акций, а 13 апреля продал все оставшиеся. Сколько потерял бизнесмен в результате этих операций?

Решение:

2) 1000 · 3/4 = 750 (акций) — составляют 3/4 от всех купленных акций.

6) 247500 + 77500 = 325000 (руб) — бизнесмен получил после продажи 1000 акций.

7) 340000 – 325000 = 15000 (руб) — потерял бизнесмен в результате всех операций.

Ответ:
15000.

Задание № 3
— является заданием базового уровня первой части, проверяет умения выполнять действия с геометрическими фигурами по содержанию курса «Планиметрия». В задании 3 проверяется умение вычислять площадь фигуры на клетчатой бумаге, умение вычислять градусные меры углов, вычислять периметры и т.п.

Пример 3.
Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Решение:
Для вычисления площади данной фигуры можно воспользоваться формулой Пика:

Для вычисления площади данного прямоугольника воспользуемся формулой Пика:

где В = 10, Г = 6, поэтому

Ответ:

20.


Читайте также: ЕГЭ по физике: решение задач о колебаниях



Задание № 4
— задача курса «Теория вероятностей и статистика». Проверяется умение вычислять вероятность события в простейшей ситуации.

Пример 4.
На окружности отмечены 5 красных и 1 синяя точка. Определите, каких многоугольников больше: тех, у которых все вершины красные, или тех, у которых одна из вершин синяя. В ответе укажите, на сколько одних больше, чем других.

Решение:
1) Воспользуемся формулой числа сочетаний из n
элементов по k
:

у которых все вершины красные.

3) Один пятиугольник, у которого все вершины красные.

4) 10 + 5 + 1 = 16 многоугольников, у которых все вершины красные.

у которых вершины красные или с одной синей вершиной.

у которых вершины красные или с одной синей вершиной.

8) Один шестиуголник, у которого вершины красные с одной синей вершиной.

9) 20 + 15 + 6 + 1 = 42 многоуголника, у которых все вершины красные или с одной синей вершиной.

10) 42 – 16 = 26 многоугольников, в которых используется синяя точка.

11) 26 – 16 = 10 многоугольников – на сколько многоугольников, у которых одна из вершин — синяя точка, больше, чем многоугольников, у которых все вершины только красные.

Ответ:
10.

Задание № 5
— базового уровня первой части проверяет умения решать простейшие уравнения (иррациональные, показательные, тригонометрические, логарифмические).

Пример 5.
Решите уравнение 2 3 + x
= 0,4 · 5 3 + x
.

Решение.
Разделим обе части данного уравнения на 5 3 + х
≠ 0, получим

2 3 + x
= 0,4 или 2 3 + х
= 2 ,
5 3 + х
5 5

откуда следует, что 3 + x
= 1, x
= –2.

Ответ:
–2.

Задание № 6
по планиметрии на нахождение геометрических величин (длин, углов, площадей), моделирование реальных ситуаций на языке геометрии. Исследование построенных моделей с использованием геометрических понятий и теорем. Источником трудностей является, как правило, незнание или неверное применение необходимых теорем планиметрии.

Площадь треугольника ABC
равна 129. DE
– средняя линия, параллельная стороне AB
. Найдите площадь трапеции ABED
.

Решение.
Треугольник CDE
подобен треугольнику CAB
по двум углам, так как угол при вершине C
общий, угол СDE
равен углу CAB
как соответственные углы при DE
|| AB
секущей AC
. Так как DE
– средняя линия треугольника по условию, то по свойству средней линии | DE
= (1/2)AB
. Значит, коэффициент подобия равен 0,5. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому

Следовательно, S ABED
= S
ΔABC
S
ΔCDE
= 129 – 32,25 = 96,75.

Задание № 7
— проверяет применение производной к исследованию функции. Для успешного выполнения необходимо содержательное, не формальное владение понятием производной.

Пример 7.
К графику функции y
= f
(x
) в точке с абсциссой x
0 проведена касательная, которая перпендикулярна прямой, проходящей через точки (4; 3) и (3; –1) этого графика. Найдите f
′(x
0).

Решение.
1) Воспользуемся уравнением прямой, проходящей через две заданные точки и найдём уравнение прямой, проходящей через точки (4; 3) и (3; –1).

(y
y
1)(x
2 – x
1) = (x
x
1)(y
2 – y
1)

(y
– 3)(3 – 4) = (x
– 4)(–1 – 3)

(y
– 3)(–1) = (x
– 4)(–4)

y
+ 3 = –4x
+ 16| · (–1)

y
– 3 = 4x
– 16

y
= 4x
– 13, где k
1 = 4.

2) Найдём угловой коэффициент касательной k
2 , которая перпендикулярна прямой y
= 4x
– 13, где k
1 = 4, по формуле:

3) Угловой коэффициент касательной – производная функции в точке касания. Значит, f
′(x
0) = k
2 = –0,25.

Ответ:
–0,25.

Задание № 8
— проверяет у участников экзамена знания по элементарной стереометрии, умение применять формулы нахождения площадей поверхностей и объемов фигур, двугранных углов, сравнивать объемы подобных фигур, уметь выполнять действия с геометрическими фигурами, координатами и векторами и т.п.

Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.

Решение.
1) V
куба = a
3 (где а
– длина ребра куба), поэтому

а
3 = 216

а
= 3 √216

2) Так как сфера вписана в куб, значит, длина диаметра сферы равна длине ребра куба, поэтому d
= a
, d
= 6, d
= 2R
, R
= 6: 2 = 3.

Задание № 9
— требует от выпускника навыков преобразования и упрощения алгебраических выражений. Задание № 9 повышенного уровня сложности с кратким ответом. Задания из раздела «Вычисления и преобразования» в ЕГЭ подразделяются на несколько видов:

    преобразования числовых рациональных выражений;

    преобразования алгебраических выражений и дробей;

    преобразования числовых/буквенных иррациональных выражений;

    действия со степенями;

    преобразование логарифмических выражений;

  1. преобразования числовых/буквенных тригонометрических выражений.

Пример 9.
Вычислите tgα, если известно, что cos2α = 0,6 и

Решение.
1) Воспользуемся формулой двойного аргумента: cos2α = 2 cos 2 α – 1 и найдём

tg 2 α = 1 – 1 = 1 – 1 = 10 – 1 = 5 – 1 = 1 1 – 1 = 1 = 0,25.
cos 2 α 0,8 8 4 4 4

Значит, tg 2 α = ± 0,5.

3) По условию

значит, α – угол II четверти и tgα

Ответ:
–0,5.

#ADVERTISING_INSERT#
Задание № 10
— проверяет у учащихся умение использовать приобретенные раннее знания и умения в практической деятельности и повседневной жизни. Можно сказать, что это задачи по физике, а не по математике, но все необходимые формулы и величины даны в условии. Задачи сводятся к решению линейного или квадратного уравнения, либо линейного или квадратного неравенства. Поэтому необходимо уметь решать такие уравнения и неравенства, и определять ответ. Ответ должен получиться в виде целого числа или конечной десятичной дроби.

Два тела массой m
= 2 кг каждое, движутся с одинаковой скоростью v
= 10 м/с под углом 2α
друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении определяется выражением Q
= mv
2 sin 2 α. Под каким наименьшим углом 2α
(в градусах) должны двигаться тела, чтобы в результате соударения выделилось не менее 50 джоулей?
Решение.
Для решения задачи нам необходимо решить неравенство Q ≥ 50, на интервале 2α
∈ (0°; 180°).

mv
2 sin 2 α ≥ 50

2· 10 2 sin 2 α ≥ 50

200 · sin 2 α ≥ 50

Так как α
∈ (0°; 90°), то будем решать только

Изобразим решение неравенства графически:

Так как по условию α
∈ (0°; 90°), значит 30° ≤ α

Задание № 11
— является типовым, но оказывается непростым для учащихся. Главным источником затруднений является построение математической модели (составление уравнения). Задание № 11 проверяет умение решать текстовые задачи.

Пример 11.
На весенних каникулах 11-классник Вася должен был решить 560 тренировочных задач для подготовки к ЕГЭ. 18 марта в последний учебный день Вася решил 5 задач. Далее ежедневно он решал на одно и то же количество задач больше по сравнению с предыдущим днём. Определите, сколько задач Вася решил 2 апреля в последний день каникул.

Решение:

Обозначим a
1 = 5 – количество задач, которые Вася решил 18 марта, d
– ежедневное количество задач, решаемых Васей, n
= 16 – количество дней с 18 марта по 2 апреля включительно, S
16 = 560 – общее количество задач, a
16 – количество задач, которые Вася решил 2 апреля. Зная, что ежедневно Вася решал на одно и то же количество задач больше по сравнению с предыдущим днём, то можно использовать формулы нахождения суммы арифметической прогрессии:

560 = (5 + a
16) · 8,

5 + a
16 = 560: 8,

5 + a
16 = 70,

a
16 = 70 – 5

a
16 = 65.

Ответ:
65.

Задание № 12
— проверяют у учащихся умение выполнять действия с функциями, уметь применять производную к исследованию функции.

Найти точку максимума функции y
= 10ln(x
+ 9) – 10x
+ 1.

Решение:
1) Найдем область определения функции: x
+ 9 > 0, x
> –9, то есть x ∈ (–9; ∞).

2) Найдем производную функции:

4) Найденная точка принадлежит промежутку (–9; ∞). Определим знаки производной функции и изобразим на рисунке поведение функции:

Искомая точка максимума x
= –8.

Скачать бесплатно рабочую программу по математике к линии УМК Г.К. Муравина, К.С. Муравина, О.В. Муравиной 10-11

Скачать бесплатно методические пособия по алгебре


Задание № 13
-повышенного уровня сложности с развернутым ответом, проверяющее умение решать уравнения, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

а) Решите уравнение 2log 3 2 (2cosx
) – 5log 3 (2cosx
) + 2 = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку .

Решение:
а) Пусть log 3 (2cosx
) = t
, тогда 2t
2 – 5t
+ 2 = 0,

log 3 (2cosx
) =
2 2cosx
= 9
cosx
=
4,5 ⇔ т.к. |cosx
| ≤ 1,
log 3 (2cosx
) =
1 2cosx
= √3
cosx
=
√3
2 2
x
=
π + 2πk
6
x
= –
π + 2πk
, k
Z
6

б) Найдём корни, лежащие на отрезке .

Из рисунка видно, что заданному отрезку принадлежат корни

Ответ:
а)
π + 2πk
; –
π + 2πk
, k
Z
; б)
11π ; 13π .
6 6 6 6


Задание № 14
-повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Расстояние между хордами равно 2√197.

а) Докажите, что центры оснований цилиндра лежат по одну сторону от этой плоскости.

б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.

Решение:
а) Хорда длиной 12 находится на расстоянии = 8 от центра окружности основания, а хорда длиной 16, аналогично, – на расстоянии 6. Поэтому расстояние между их проекциями на плоскость, параллельную основаниям цилиндров, составляет либо 8 + 6 = 14, либо 8 − 6 = 2.

Тогда расстояние между хордами составляет либо

= = √980 = = 2√245

= = √788 = = 2√197.

По условию реализовался второй случай, в нем проекции хорд лежат по одну сторону от оси цилиндра. Значит, ось не пересекает данную плоскость в пределах цилиндра, то есть основания лежат по одну сторону от нее. Что требовалось доказать.

б) Обозначим центры оснований за О 1 и О 2 . Проведем из центра основания с хордой длины 12 серединный перпендикуляр к этой хорде (он имеет длину 8, как уже отмечалось) и из центра другого основания — к другой хорде. Они лежат в одной плоскости β, перпендикулярной этим хордам. Назовем середину меньшей хорды B, большей A и проекцию A на второе основание — H (H ∈ β). Тогда AB,AH ∈ β и значит, AB,AH перпендикулярны хорде, то есть прямой пересечения основания с данной плоскостью.

Значит, искомый угол равен

∠ABH = arctg AH = arctg 28 = arctg14.
BH 8 – 6

Задание № 15
— повышенного уровня сложности с развернутым ответом, проверяет умение решать неравенства, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

Пример 15.
Решите неравенство |x
2 – 3x
| · log 2 (x
+ 1) ≤ 3x
x
2 .

Решение:
Областью определения данного неравенства является интервал (–1; +∞). Рассмотри отдельно три случая:

1) Пусть x
2 – 3x
= 0, т.е. х
= 0 или х
= 3. В этом случае данное неравенство превращается в верное, следовательно, эти значения входят в решение.

2) Пусть теперь x
2 – 3x
> 0, т.е. x
∈ (–1; 0) ∪ (3; +∞). При этом данное неравенство можно переписать в виде (x
2 – 3x
) · log 2 (x
+ 1) ≤ 3x
x
2 и разделить на положительное выражение x
2 – 3x
. Получим log 2 (x
+ 1) ≤ –1, x
+ 1 ≤ 2 –1 , x
≤ 0,5 –1 или x
≤ –0,5. Учитывая область определения, имеем x
∈ (–1; –0,5].

3) Наконец, рассмотрим x
2 – 3x
x
∈ (0; 3). При этом исходное неравенство перепишется в виде (3x
x
2) · log 2 (x
+ 1) ≤ 3x
x
2 . После деления на положительное выражение 3x
x
2 , получим log 2 (x
+ 1) ≤ 1, x
+ 1 ≤ 2, x
≤ 1. Учитывая область, имеем x
∈ (0; 1].

Объединяя полученные решения, получаем x
∈ (–1; –0.5] ∪ ∪ {3}.

Ответ:
(–1; –0.5] ∪ ∪ {3}.

Задание № 16
— повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами, координатами и векторами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E – на отрезке AB. а) Докажите, что FH = 2DH. б) Найдите площадь прямоугольника DEFH, если AB = 4.

Решение:
а)

1) ΔBEF – прямоугольный, EF⊥BC, ∠B = (180° – 120°) : 2 = 30°, тогда EF = BE по свойству катета, лежащего против угла 30°.

2) Пусть EF = DH = x
, тогда BE = 2x
, BF = x
√3 по теореме Пифагора.

3) Так как ΔABC равнобедренный, значит, ∠B = ∠C = 30˚.

BD – биссектриса ∠B, значит ∠ABD = ∠DBC = 15˚.

4) Рассмотрим ΔDBH – прямоугольный, т.к. DH⊥BC.

2x
= 4 – 2x
2x
(√3 + 1)
4

√3 – 1
= 2 – x

x
= 3 – √3

EF = 3 – √3

2) S
DEFH = ED · EF = (3 – √3
) · 2(3 – √3
)

S
DEFH = 24 – 12√3.

Ответ:
24 – 12√3.

Задание № 17
— задание с развернутым ответом, это задание проверяет применение знаний и умений в практической деятельности и повседневной жизни, умение строить и исследовать математические модели. Это задание — текстовая задача с экономическим содержанием.

Пример 17.
Вклад в размере 20 млн рублей планируется открыть на четыре года. В конце каждого года банк увеличивает вклад на 10% по сравнению с его размером в начале года. Кроме того, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на х
млн. рублей, где х
целое
число. Найдите наибольшее значение х
, при котором банк за четыре года начислит на вклад меньше 17 млн рублей.

Решение:
В конце первого года вклад составит 20 + 20 · 0,1 = 22 млн рублей, а в конце второго – 22 + 22 · 0,1 = 24,2 млн рублей. В начале третьего года вклад (в млн рублей) составит (24,2 + х
), а в конце — (24,2 + х)
+ (24,2 + х)
· 0,1 = (26,62 + 1,1х
). В начале четвёртого года вклад составит (26,62 + 2,1х)
, а в конце — (26,62 + 2,1х
) + (26,62 + 2,1х
) · 0,1 = (29,282 + 2,31х
). По условию, нужно найти наибольшее целое х, для которого выполнено неравенство

(29,282 + 2,31x
) – 20 – 2x

29,282 + 2,31x
– 20 – 2x

0,31x

0,31x

Наибольшее целое решение этого неравенства — число 24.

Ответ:
24.

Задание № 18
— задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности — это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 18 необходим, кроме прочных математических знаний, также высокий уровень математической культуры.

При каких a
система неравенств

x
2 + y
2 ≤ 2ay
a
2 + 1
y
+ a
≤ |x
| – a

имеет ровно два решения?

Решение:
Данную систему можно переписать в виде

x
2 + (y
a
) 2 ≤ 1
y
≤ |x
| – a

Если нарисовать на плоскости множество решений первого неравенства, получится внутренность круга (с границей) радиуса 1 с центром в точке (0, а
). Множество решений второго неравенства – часть плоскости, лежащая под графиком функции y
= |
x
| –
a
,
причём последний есть график функции
y
= |
x
|
, сдвинутый вниз на а
. Решение данной системы есть пересечение множеств решений каждого из неравенств.

Следовательно, два решения данная система будет иметь лишь в случае, изображённом на рис. 1.

Точки касания круга с прямыми и будут двумя решениями системы. Каждая из прямых наклонена к осям под углом 45°. Значит, треугольник PQR
– прямоугольный равнобедренный. Точка Q
имеет координаты (0, а
), а точка R
– координаты (0, –а
). Кроме того, отрезки PR
и PQ
равны радиусу окружности, равному 1. Значит,




Задание № 19
— задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности — это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 19 необходимо уметь осуществлять поиск решения, выбирая различные подходы из числа известных, модифицируя изученные методы.

Пусть Sn
сумма п
членов арифметической прогрессии (а п
). Известно, что S n
+ 1 = 2n
2 – 21n
– 23.

а) Укажите формулу п
-го члена этой прогрессии.

б) Найдите наименьшую по модулю сумму S n
.

в) Найдите наименьшее п
, при котором S n
будет квадратом целого числа.

Решение
: а) Очевидно, что a n
= S n
S n
– 1 . Используя данную формулу, получаем:

S n
= S
(n
– 1) + 1 = 2(n
– 1) 2 – 21(n
– 1) – 23 = 2n
2 – 25n
,

S n
– 1 = S
(n
– 2) + 1 = 2(n
– 1) 2 – 21(n
– 2) – 23 = 2n
2 – 25n
+ 27

значит, a n
= 2n
2 – 25n
– (2n
2 – 29n
+ 27) = 4n
– 27.

Б) Так как S n
= 2n
2 – 25n
, то рассмотрим функцию S
(x
) = |
2x
2 – 25x|
. Ее график можно увидеть на рисунке.

Очевидно, что наименьшее значение достигается в целочисленных точках, расположенных наиболее близко к нулям функции. Очевидно, что это точки х
= 1, х
= 12 и х
= 13. Поскольку, S
(1) = |S
1 | = |2 – 25| = 23, S
(12) = |S
12 | = |2 · 144 – 25 · 12| = 12, S
(13) = |S
13 | = |2 · 169 – 25 · 13| = 13, то наименьшее значение равно 12.

в) Из предыдущего пункта вытекает, что Sn
положительно, начиная с n
= 13. Так как S n
= 2n
2 – 25n
= n
(2n
– 25), то очевидный случай, когда данное выражение является полным квадратом, реализуется при n
= 2n
– 25, то есть при п
= 25.

Осталось проверить значения с 13 до 25:

S
13 = 13 · 1, S
14 = 14 · 3, S
15 = 15 · 5, S
16 = 16 · 7, S
17 = 17 · 9, S
18 = 18 · 11, S
19 = 19 · 13, S
20 = 20 · 13, S
21 = 21 · 17, S
22 = 22 · 19, S
23 = 23 · 21, S
24 = 24 · 23.

Получается, что при меньших значениях п
полный квадрат не достигается.

Ответ:
а) a n
= 4n
– 27; б) 12; в) 25.

________________

*С мая 2017 года объединенная издательская группа «ДРОФА-ВЕНТАНА» входит в корпорацию «Российский учебник». В корпорацию также вошли издательство «Астрель» и цифровая образовательная платформа «LECTA». Генеральным директором назначен Александр Брычкин, выпускник Финансовой академии при Правительстве РФ, кандидат экономических наук, руководитель инновационных проектов издательства «ДРОФА» в сфере цифрового образования (электронные формы учебников, «Российская электронная школа», цифровая образовательная платформа LECTA). До прихода в издательство «ДРОФА» занимал позицию вице-президента по стратегическому развитию и инвестициям издательского холдинга «ЭКСМО-АСТ». Сегодня издательская корпорация «Российский учебник» обладает самым крупным портфелем учебников, включенных в Федеральный перечень — 485 наименований (примерно 40%, без учета учебников для коррекционной школы). Издательствам корпорации принадлежат наиболее востребованные российскими школами комплекты учебников по физике, черчению, биологии, химии, технологии, географии, астрономии — областям знаний, которые нужны для развития производственного потенциала страны. В портфель корпорации входят учебники и учебные пособия для начальной школы, удостоенные Премии Президента в области образования. Это учебники и пособия по предметным областям, которые необходимы для развития научно-технического и производственного потенциала России.

ЕГЭ по математике – основная дисциплина, которая сдается всеми выпускниками. Экзаменационное испытание делится на два уровня – базовый и профильный. Второй требуется только тем, кто планирует сделать математику основным предметом изучения в высшем учебном заведении. Базовый уровень сдают все остальные. Цель данное испытания – проверить уровень умений и знаний учеников-выпускников на соответствие нормам и стандартам. Деление на профильный и базовый уровни впервые использовалось в 2017 году, чтобы ученики, которым не нужна углубленная математика для поступления в ВУЗ, не тратили время на подготовку к сложным заданиям.

Чтобы получить аттестат, и подать документы в ВУЗ, требуется удовлетворительно выполнить задания базового уровня. Подготовка включает повторение школьной программы по алгебре и геометрии. Задания в ЕГЭ базового уровня доступны школьникам с разным уровнем знаний. Базовый уровень могут сдать школьники, которые были просто внимательны на уроках.
Основные рекомендации по подготовке такие:

  • Систематическую подготовку стоит начинать заблаговременно, чтобы не пришлось нервничать, осваивая все задания за 1-2 месяца до экзамена. Период, необходимый для качественной подготовки, зависит от исходного уровня знаний.
  • Если у вас нет уверенности в том, что вы осилите задания самостоятельно, обратитесь за помощью к репетитору – он поможет систематизировать знания.
  • Тренируйтесь решать задачи, примеры, задания, согласно программе.
  • Решайте задания в онлайн режиме – «Решу ЕГЭ» поможет с регулярными тренировками и подготовкой к экзамену. С репетитором вы сможете анализировать ошибки, разбирать задания, которые вызывают особые затруднения.

Чтобы успешно пройти испытание, требуется повторять такие темы: уравнения и неравенства, системы координат, геометрические фигуры, тождественные преобразования, функции и векторы.
В процессе подготовки решайте как можно больше заданий разной сложности, постепенно переходите на выполнение заданий на время. Познакомьтесь с
.
Методы подготовки

  • Изучение предмета в школе;
  • Самообразование – решение задач по примеру;
  • Занятия с репетитором;
  • Обучение на курсах;
  • Онлайн подготовка.

Последний вариант – экономия времени и средств, возможность проверить свои силы и очертить круг проблемных заданий.

Предусматривается 20 заданий (количество может меняться с каждым годом), на которые необходимо дать краткие ответы. Этого хватит для школьника, который планирует поступать в высшие учебные заведения на гуманитарные специальности.
Испытуемому дается 3 часа для выполнения заданий. Перед началом работы необходимо внимательно читать инструкцию, и действовать, согласно ее положениям. В сопровождении к экзаменационной тетради идут справочные материалы, которые необходимы для прохождения экзаменационного испытания. За успешное выполнение всех заданий дается 5 баллов, минимальная, пороговая оценка – 3.