9 задание егэ математика профиль 2022 прямая

Пробный вариант егэ 2022 по математике профиль 9 с ответами егэ 100 баллов. тренировочные варианты егэ 2022 по математике профиль

Пробный вариант ЕГЭ 2022 по математике (профиль) №9 с ответами «ЕГЭ 100 БАЛЛОВ». Тренировочные варианты ЕГЭ 2022 по математике (профиль) с ответами. ЕГЭ МАТЕМАТИКА Профильный уровень.

https://vk.com/ege100ballov

https://vk.com/math_100

Примеры некоторых заданий из варианта

211101_Profilnaya_matematika_-_Probny_variant_9_s_resheniem

скачать



Смотрите также:

Решение и ответы заданий Варианта №9 из сборника ЕГЭ 2022 по математике (профильный уровень) И.В. Ященко. ГДЗ профиль для 11 класса. Полный разбор.

Задание 1.
Решите уравнение tgfrac{pi(2x+5)}{6}=sqrt{3}. В ответе запишите наибольший отрицательный корень.
Ответ задания: –1,5.

Задание 2.
Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 7, но не дойдя до отметки 10.
Ответ задания: 0,25.

Задание 3.
Сторона ромба равна 10, острый угол равен 30°. Найдите радиус окружности, вписанной в ромб.

Сторона ромба равна 10, острый угол равен 30°.

Ответ задания: 2,5.

Задание 4.
Найдите frac{g(10-x)}{g(10+x)}, если g(x)=sqrt[3]{x(20-x)}, при |x| ≠ 10.

Задание 5.
Из единичного куба вырезана правильная четырёхугольная призма со стороной основания 0,4 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба.
Из единичного куба вырезана правильная четырёхугольная призма со стороной основания 0,4 и боковым ребром 1.

Задание 6.
На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0.

Ответ задания: 0,2.

Задание 7.
Амплитуда колебаний маятника зависит от частоты вынуждающей силы и определяется по формуле A(omega)=frac{A_{0}omega_{p}^{2}}{|omega_{p}^{2}-omega^{2}|}, где ω – частота вынуждающей силы (в с-1), A0 – постоянный параметр, ωp = 345 с-1 – резонансная частота. Найдите максимальную частоту ω, меньшую резонансной, для которой амплитуда колебаний превосходит величину A0 не более чем на 12,5%. Ответ дайте в с-1.
Ответ задания: 115.

Задание 8.
Расстояние между городами А и В равно 180 км. Из города А в город В выехал автомобиль, а через 3 часа следом за ним со скоростью 90 км/ч выехал мотоциклист, догнал автомобиль в городе С и повернул обратно. Когда он вернулся в А, автомобиль прибыл в В. Найдите расстояние от А до С. Ответ дайте в километрах.
Ответ задания: 135.

Задание 9.
На рисунке изображён график функции f(x) = b + logaх. Найдите f(81).

На рисунке изображён график функции f(x) = b + logaх. Найдите f(81).

Задание 10.
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Ответ задания: 0,973.

Задание 11.
Найдите точку максимума функции y = (х + 35)е35–х.

Задание 12.
а) Решите уравнение 16 + 4 – 3 = 0.
б) Найдите все корни этого уравнения, принадлежащие отрезку [0,5; 5].

Задание 13.
В правильной треугольной призме АВСА1В1С1 точка К – середина ребра АА1, a АВ = АА1. Плоскость α проходит через точки К и В1 параллельно прямой ВС1.

а) Докажите, что плоскость α делит ребро А1С1 в отношении 1:2.
б) Найдите расстояние от точки А1 до плоскости α, если АВ = 6.

Задание 14.
Решите неравенство 25cdot 4^{frac{1}{2}-frac{2}{x}}-133cdot 10^{-frac{2}{x}}+4cdot 5^{1-frac{4}{x}}le 0.

Задание 15.
В июле 2025 года планируется взять кредит в банке на сумму 650 тыс. рублей на 10 лет. Условия его возврата таковы:
– в январе 2026, 2027, 2028, 2029 и 2030 годов на сумму 650 тыс. рублей долг возрастает на 19% по сравнению с концом предыдущего года;
– в январе 2031, 2032, 2033, 2034 и 2035 годов долг возрастает на 16% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить часть долга;
– в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года;
– к июлю 2035 года кредит должен быть полностью погашен.
Найдите общую сумму выплат после полного погашения кредита.

Задание 16.
В трапеции ABCD основание AD в два раза меньше основания ВС. Внутри трапеции взяли точку М так, что углы ВАМ и CDM прямые.

а) Докажите, что ВМ = СМ.
б) Найдите угол АВС, если угол BCD равен 64°, а расстояние от точки М до прямой ВС равно стороне AD.
Ответ задания: 71.

Задание 17.
Найдите все такие значения а, при каждом из которых уравнение

sqrt{5-7x}cdot ln(9x^{2}-a^{2})=sqrt{5-7x}cdot ln(3x+a)

имеет ровно один корень.

Задание 18.
На доске написано 11 различных натуральных чисел. Среднее арифметическое шести наименьших из них равно 8, а среднее арифметическое семи наибольших равно 14.

а) Может ли наибольшее из этих одиннадцати чисел равняться 16?
б) Может ли среднее арифметическое всех одиннадцати чисел равняться 10?
в) Найдите наименьшее значение среднего арифметического всех одиннадцати чисел.

Источник варианта: Сборник ЕГЭ 2022. ФИПИ школе. Математика профильный уровень. Типовые экзаменационные варианты. Под редакцией И.В. Ященко. 36 вариантов.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 3.7 / 5. Количество оценок: 6

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставь контакт для связи, если хочешь, что бы я тебе ответил.

ЕГЭ по математике профиль

ФИПИ опубликовал Методические рекомендации обучающимся по организации индивидуальной подготовки к ЕГЭ 2022 по математике профильного уровня.

В них приведены тренировочные задания новых типов, ответы на задания и критерии оценивания. 

Линия 9 – задания повышенного уровня сложности с кратким ответом интегрированного характера, для выполнения которых необходимо привлекать знания из разных разделов курса математики: элементарные функции; решение линейных, квадратных, иррациональных, рациональных, логарифмических, показательных уравнений и их систем. 

 Новое задание 9 ЕГЭ 2022 по математике

Связанные страницы:

В 2022 задание 9 по математике профильного уровня изменилось — появился новый формат, проверяющий знание свойств параболы. Номер вызывает вопросы у учеников, но на деле решается просто. В статье разберем правила выполнения задания 9 ЕГЭ по математике. 

Способы решения номера

9 задание по математике профильного уровня 2022 получится решить четырьмя методами. 

Первый вариант

Начнем с простого способа, не требующего глубокого понимания темы. Условие выглядит следующим образом: 

Присмотревшись к картинке задания 9 по профильной математике, видим: график содержит целочисленные точки. Отметим их на изображении (экзамен разрешает использовать текст КИМа). Решение требует минимум три точки: 

Видим: в точке «-4» ордината равна «-3». Запишем уравнение, подставив значения значения абсциссы и ординаты: 

16a — 4b + c = -3

Аналогичным образом записываем выражение, используя две остальные точки: 

9a — 3b + c = -2

4a — 2b + c = 1

Получаем систему трех уравнений с тремя неизвестными. Решить достаточно легко. Простейший вариант: вычесть последнюю строчку из первых двух, избавившись от коэффициента “c”. После первое уравнение сокращаем на «2», вычитаем из него второе. Находим: a = 1. Подставляем далее, получаем: 

b = 8;

c = 13. 

Имея коэффициенты, переписываем уравнение, подставляем значение абсциссы: 

f(x) = x2 + 8x + 13

f(-12) = 144 — 96 + 13 = 61

Второй вариант

Мы решили 9 задание по математике профилю наиболее простым способом. Однако вычисления получится сократить. Построим локальную систему координат около вершины параболы: 

Видим особенность параболы: в точке «1» ордината равна 1, в точке «2» — 4. Представленный график отражает классическое выражение: y = x2, сдвинутое в системе координат. Известно: преобразования не меняют старший коэффициент. Делаем вывод, “a” равно “1”. Теперь найдем “b”. Используем выражение вершины параболы: x0 = -b / 2a. По рисунку видно: x0 = -4. Поставляя это число, найденное значение “a”, находим: b = 8. Дальнейшее решение требует одного уравнения из первого способа. Теперь выполнить номер проще. 

Третий вариант

9 задание по математике профильного уровня реально упростить еще сильнее. Изучим способ образования данной параболы. Она получилась путем смещения исходной на “4” налево и на “3” вниз. Запишем уравнения. Изначальный пример: 

y = x2

Сдвиг влево записывается: 

y = (x + 4)2

Сдвиг вниз: 

y = (x + 4)2 — 3

Получаем готовое уравнение, достаточно подставить “-12”. Ответ аналогичный: 61. 

Четвертый вариант

Рассмотрим последний способ выполнения задания 9 по профильной математике 2022, требующий логического мышления. Снова изучим локальную систему координат: 

Сравнивая с изначальной, получим: абсцисса «-12» из условия представляет собой значение «-8» локальной системы. Это связано со сдвигом. Ордината соответственно равна “64”. Не забываем: парабола сдвинута также на три пункта вниз. Получается, итоговое значение будет на 3 меньше найденного. Ответ снова 61!

В статье мы разобрали способы решения нового 9 задания из ЕГЭ по математике. Хотите изучить принципы выполнения остальных номеров? Записывайтесь на курсы «Уникум» Российского университета дружбы народов. Обучение проходит под руководством опытных преподавателей, форматы — очный, дистанционный. Для закрепления материала существует учебный портал Unikum. 

Содержание данной статьи носит ознакомительный характер. При подготовке к сдаче ЕГЭ пользуйтесь дополнительными источниками информации! 

29 декабря 2021

В закладки

Обсудить

Жалоба

В версии ЕГЭ-2022 по математике появилось новое 9 задание, в котором требуется работа с функциями.

Эта тема пока вызывает затруднения у учащихся в связи со своей новизной. В презентации представлены решения задач с использованием линейной и квадратичной функций. Некоторые задачи решены 3 способами, чтобы учащиеся смогли выбрать наиболее понятный для себя.

ege9new.pptx
ege9new.pdf

Автор: Лесных Марина Владимировна.

Этапы закрепощения крестьян в России

Крепостное право на Руси появилось позже, чем во многих средневековых европейских королевствах. Это было связано с объективными причинами – низкая плотность населения, зависимость от ордынского ига.


Задания 12-18 досрочного ЕГЭ по математике

3 примера по каждому заданию. Досрочный ЕГЭ по математике прошёл 28 марта.


ОГЭ по математике. Тренировочный вариант СтатГрад

Видеоуроки ОГЭ | Сегодня, 21:46

Решение тестовой части (№1-19) тренировочной работы по математике от 18 апреля 2022 года.